Space Industry and Business News  
STELLAR CHEMISTRY
Astronomers discover sonic boom from powerful unseen explosion
by Staff Writers
Toronto, Canada (SPX) Oct 08, 2018

Artist's conception of a Gamma Ray Burst. Jets of fast-moving material are propelled outward through a spherical shell of ejected material from the initial explosion of a massive star and its collapse into a black hole. Credit: Bill Saxton, NRAO/AUI/NSF

A team of astronomers has detected the sonic boom from an immensely powerful cosmic explosion, even though the explosion itself was totally unseen.

For years, astronomers have been hunting all over the sky for an example of this strange phenomenon, known as an "orphan afterglow." At last, now they've finally found one.

The titanic eruption, known as a Gamma Ray Burst (GRB), was generated by the collapse of a massive star in a galaxy nearly 300 million light-years from Earth. In the process, the star collapsed into either a dense star called a magnetar, or more likely, a black hole.

Typically, GRBs release a prodigious amount of energy, as much as the Sun would release over ten billion years.

The blast generates two jets of gamma rays which travel out from the collapsing star in opposite directions at nearly the speed of light. When these jets are pointed at Earth, astronomers see these focused outpourings of energy as intense flashes of gamma-rays.

But, GRB jets are very narrow, and because the jets from this particular collapsing star weren't pointed at us, the GRB itself was completely undetectable.

However the GRB's jets crashed into the gas that surrounded the original star, producing a huge shock wave akin to a sonic boom. This heated up the gas, producing a glow that radiated radio energy in all directions.

"This is the first time anyone has been able to capture the sonic boom from an unseen GRB explosion," says Bryan Gaensler, a co-author on the paper describing the observation. "In the past, people have either seen the explosion and then seen the boom, or on one or two occasions have seen the boom and then looked back and recovered the explosion after the fact. But here we have seen the boom, and yet the preceding explosion seems to be completely missing as viewed from Earth."

Gaensler is Director of the Dunlap Institute for Astronomy and Astrophysics, University of Toronto. The paper, whose lead author is Casey Law, University of California at Berkeley, is being published in the Astrophysical Journal Letters.

Gaensler, Law and their colleagues made the discovery by comparing data from previous radio surveys of the sky with data from the Very Large Array Sky Survey (VLASS), being conducted with the Karl G. Jansky Very Large Array in New Mexico.

"We compared images from old maps of the sky and found one radio source that was no longer visible today in VLASS," says Law. "Looking at the radio source in other old data shows that it lived in a relatively nearby galaxy, and back in the 1990s, it was as luminous as the biggest explosions known, gamma-ray bursts."

The source's brightness, as well as its evolution over the decades, were clues that it originated from a GRB. Another was that it was found where astronomers expected to find GRBs: in a relatively small galaxy, of a type known as "dwarf" galaxies.

The discovery provides crucial new insight into the nature of GRBs and their jets. Given that GRBs are pointed in random directions relative to us, the fraction we see from Earth depends on how narrow or wide the jets are. "By comparing the number of 'orphaned' afterglows to those with GRBs preceding them," says Law, "we can measure that fraction much more precisely than before."

The analysis also promises a far more accurate GRB census, made possible using today's modern astronomical radio surveys that scan large portions of the sky. For example, over the next 7 years, the VLASS will make three complete scans of 80 percent of the entire sky.

Says Gaensler, "This shows the exciting capabilities of the new generation of wide-field radio surveys. There are dramatic and dynamic explosions and flares happening out there, but we can only find them if we can constantly patrol the sky to see what's changing."


Related Links
Dunlap Institute for Astronomy and Astrophysics
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Gamma rays seen from exotic Milky Way object
College Park MD (SPX) Oct 03, 2018
The night sky seems serene, but telescopes tell us that the universe is filled with collisions and explosions. Distant, violent events signal their presence by spewing light and particles in all directions. When these messengers reach Earth, scientists can use them to map out the action-packed sky, helping to better understand the volatile processes happening deep within space. For the first time, an international collaboration of scientists has detected highly energetic light coming from the oute ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Researchers discover highly active organic photocatalyst

NTU Singapore scientists develop smart technology for synchronized 3D printing of concrete

Brazil says Norsk Hydro lacked waste license for stalled plant

Norsk Hydro halts output at key Brazil plant, share plunges

STELLAR CHEMISTRY
Airbus tests 4G 5G stratospheric balloons for defence comms

Lockheed Martin embraces agile software development to evolve signals intelligence capabilities

Lockheed Martin Introduces Mission Planning System That Connects Systems and Assets Across Domains

ViaSat contracted for JTRS aircraft communications systems

STELLAR CHEMISTRY
STELLAR CHEMISTRY
New Study Tracks Hurricane Harvey Stormwater with GPS

Lockheed awarded $1.4B for first GPS IIIF satellites

China launches twin BeiDou-3 satellites

First satellite for GPS III upgrades to launch in December

STELLAR CHEMISTRY
Price for F-35 drops to lowest level yet

US F-35 fighters fly first ever combat mission; F-35 crashes for the first time

Marines send F-35B on first combat strike

Harris contracted for B-52, C-130 parts for U.S. Special Ops Forces

STELLAR CHEMISTRY
A new way to count qubits

Qualcomm alleges Apple gave swiped chip secrets to Intel

Smaller, faster and more efficient modulator sets to revolutionize optoelectronic industry

DARPA contracts USC for circuit development program

STELLAR CHEMISTRY
ICESat-2 Laser Fires for 1st Time, Measures Antarctic Height

Methane's effects on sunlight vary by region

UM researchers find precipitation thresholds regulate carbon exchange

How Earth sheds heat into space

STELLAR CHEMISTRY
On patrol with India's anti-plastic 'blue squad'

Microplastics found deep in sand where turtles nest

Gangsters, militants exploit environment for cash

NASA Study Untangles Smoke, Pollution Effects on Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.