Space Industry and Business News
STELLAR CHEMISTRY
Astronomers detect most distant fast radio burst to date
The ASKAP array in Australia.
Astronomers detect most distant fast radio burst to date
by Staff Writers
Munich, Germany (SPX) Oct 20, 2023

An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory's (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun's total emission over 30 years.

The discovery of the burst, named FRB 20220610A, was made in June last year by the ASKAP radio telescope in Australia [1] and it smashed the team's previous distance record by 50 percent.

"Using ASKAP's array of dishes, we were able to determine precisely where the burst came from," says Stuart Ryder, an astronomer from Macquarie University in Australia and the co-lead author of the study published in Science. "Then we used [ESO's VLT] in Chile to search for the source galaxy, [2] finding it to be older and further away than any other FRB source found to date and likely within a small group of merging galaxies."

The discovery confirms that FRBs can be used to measure the 'missing' matter between galaxies, providing a new way to 'weigh' the Universe.

Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology. "If we count up the amount of normal matter in the Universe - the atoms that we are all made of - we find that more than half of what should be there today is missing," says Ryan Shannon, a professor at the Swinburne University of Technology in Australia, who also co-led the study. "We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it's impossible to see using normal techniques."

"Fast radio bursts sense this ionised material. Even in space that is nearly perfectly empty they can 'see' all the electrons, and that allows us to measure how much stuff is between the galaxies," Shannon says.

Finding distant FRBs is key to accurately measuring the Universe's missing matter, as shown by the late Australian astronomer Jean-Pierre ('J-P') Macquart in 2020. "J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies. This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe," says Ryder.

"While we still don't know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe," says Shannon.

The result represents the limit of what is achievable with telescopes today, although astronomers will soon have the tools to detect even older and more distant bursts, pin down their source galaxies and measure the Universe's missing matter. The international Square Kilometre Array Observatory is currently building two radio telescopes in South Africa and Australia that will be capable of finding thousands of FRBs, including very distant ones that cannot be detected with current facilities. ESO's Extremely Large Telescope, a 39-metre telescope under construction in the Chilean Atacama Desert, will be one of the few telescopes able to study the source galaxies of bursts even further away than FRB 20220610A.

Research Report:A luminous fast radio burst that probes the Universe at redshift 1

Related Links
ASKAP radio telescope
European Southern Observatory
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Grasping the three-dimensional morphology of kilonovae
Darmstadt, Germany (SPX) Oct 19, 2023
An advanced new three-dimensional (3D) computer simulation of the light emitted following a merger of two neutron stars has produced a similar sequence of spectroscopic features to an observed kilonova. "The unprecedented agreement between our simulations and the observation of kilonova AT2017gfo indicates that we understand broadly what has taken place in the explosion and aftermath," says Luke Shingles, scientist at GSI/FAIR and the leading author of the publication in The Astrophysical Journal ... read more

STELLAR CHEMISTRY
Researchers developing 'revolutionary' multi-material for light-based 3D printing

Tightbeam tech set to revolutionize Global Marine Internet through Aalyria-HICO Partnership

NASA's First Two-way End-to-End Laser Communications System

Light-powered multi-level memory tech revolutionizes data processing

STELLAR CHEMISTRY
DoD enlists SES Space and Defense for satellite-based communication services

University of Kansas wins $5M NSF grant to help secure 5G for U.S. Military

DARPA Selects Teams to Boost Supply-and-Demand Network Resiliency

Northrop Grumman to Create Constellation of Connectivity for Air Force Research Laboratory

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

Galileo becomes faster for every user

Present and future of satellite navigation

STELLAR CHEMISTRY
Industry and Academia team up to accelerate Power-to-Liquid Aviation Fuels in Germany

DLR and NASA Collaborate to Advance Aircraft Aerodynamics Research

France says talking to Saudi about Rafale fighter sale

ATHENA sensor increases aircraft survivability with advanced capabilities

STELLAR CHEMISTRY
Taiwan's TSMC reports profit drop in third quarter

From a five-layer graphene sandwich, a rare electronic state emerges

Tech giants Foxconn, Nvidia announce they are building 'AI factories'

US tightens curbs on AI chip exports to China

STELLAR CHEMISTRY
High-resolution atmospheric modeling gets a boost with next-gen GEOS-Chem software

QuickSounder Spacecraft contract awarded by NASA

MDA Selects Spacex to launch Chorus Constellation

Yaogan remote-sensing satellites launched into orbit

STELLAR CHEMISTRY
'No Man's Land' parade of music and trash charms Johannesburg

Panama police in standoff with protesters over Canadian-run mine

'Severely punished': Vietnam environmental activists face crackdown

Thai government pledges action as Bangkok pollution spikes

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.