Space Industry and Business News  
SPACE TRAVEL
Ascent Trajectories and Gravity Turns
by Staff Writers for Launchspace
Bethesda, MD (SPX) Dec 03, 2018

Since all space launch vehicles consist of at least two stages, each stage is fired sequentially, resulting in slight discontinuities in thrust. Therefore, ascent sequences are designed to deal with lower-stage shutdown, separation and upper-stage startup. An actual ascent sequence involves many events and steps. For all those who are involved, concerned and interested in launch vehicle performance, let Launchspace bring you up to date on this topic.

Almost all space launch vehicles liftoff from the ground in the vertical direction and continue to orbit along an ascent trajectory that is usually optimized for the conditions in order to maximize performance while maintaining conservative safety margins.

The actual shape of the path to orbit is influenced by a number of factors, including winds and the desired payload injection parameters. However, the ideal trajectory profile is based on reaching orbital speed, altitude and orientation as the upper stage completes its injection burn. In most cases, the trajectory is designed to avoid any aerodynamic side load, i.e., the angle of attack is kept at zero.

Ignoring wind factors, this is achieved through the use of a "gravity" turn or "zero-lift" turn. This is a trajectory optimization technique that uses the transverse component of gravity (that is perpendicular to the launch vehicle's longitudinal axis) to turn the velocity vector as it ascents toward orbit.

Control is achieved by carefully changing the pitch orientation of the vehicle during its powered ascent. The gravity turn offers the advantage of a natural ascent profile without wasting any of the vehicle's propellant. Furthermore, by keeping the angle of attack near zero, transverse aerodynamic stresses are kept to a minimum, allowing a lighter launch vehicle.

At liftoff, the rocket begins its vertical ascent, gaining both speed and altitude. Initially, gravity acts directly against the thrust of the rocket, limiting its vertical acceleration and acting as "gravity drag."

As soon as the vehicle clears any service towers and performs any required roll maneuvers, a "pitchover maneuver" is executed in order to steer the rocket's longitudinal axis toward the downrange direction and to establish the ultimate orbit plane.

This maneuver is accomplished by gimbaling the rocket engines slightly to direct some of the thrust to one side, creating a net torque on the vehicle.

Once this is completed, a small part of the gravitational force is directed perpendicular to the longitudinal axis. This is the beginning of the gravity turn. From this point until orbit injection, the transverse gravity component continues to grow and causes the vehicle's velocity vector to rotate toward the horizon as it ascends.

The exact initial pitchover angle depends on the specific launch vehicle and is orbital destination. As soon as the pitchover maneuver is completed, the rocket engines are returned to their non-gimbaled orientation.

Note that this small steering maneuver is the only one needed during an ideal ascent in which thrust must be used for the purpose of steering. In reality, wind forces do cause minor gimbal-induced corrections during ascent.

Since all space launch vehicles consist of at least two stages, each stage is fired sequentially, resulting in slight discontinuities in thrust. Therefore, ascent sequences are designed to deal with lower-stage shutdown, separation and upper-stage startup.

An actual ascent sequence involves many events and steps. For all those who are involved, concerned and interested in launch vehicle performance, let Launchspace bring you up to date on this topic.


Related Links
Launchspace
Space Tourism, Space Transport and Space Exploration News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE TRAVEL
Exploration makes perfect
by Staff Writers
Testing the technology to explore other planets starts on Earth. While robots scout uncharted terrains, moonwalkers analyse rocks and send detailed geological descriptions to mission control. Artificial intelligence gets better with human interaction and the Moon is front of mind. This is all part of Pangaea-X, an extension of ESA's Pangaea geology training that puts technology through its paces in scenarios that mimic human and robotic operations away from our planet. A week of intense test ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
GEDI scientists share space laser excitement

The countries that have the most junk in Space

Virtual reality could serve as powerful environmental education tool

Borophene advances as 2D materials platform

SPACE TRAVEL
Boeing tapped by Air Force for jam-resistant satellite comms terminals

Navy nanosatellite launch delayed for further inspection

Rockwell Collins airborne radio certified by NSA

NSA certifies Harris AN/PRC-163 radio for top secret intelligence

SPACE TRAVEL
SPACE TRAVEL
Beijing's space navigation BeiDou program seeks to dethrone US-owned GPS platform

China expands use of BeiDou navigation system in transportation

China launches twin BeiDou navigation satellites

Finland summons Russian ambassador over GPS blocking claims

SPACE TRAVEL
United Technologies contracted for F-35 engine logistics support

New-found debris believed from Flight MH370 handed to Malaysia govt

Lockheed Martin to study U.S. Navy F-35 operational capability

Northrop Grumman, Harris partner on jammers for the EA-18 Growler

SPACE TRAVEL
Colloidal quantum dots make LEDs shine bright in the infrared

Quantum computing at scale: Australian scientists achieve compact, sensitive qubit readout

An accelerator on a microchip

Living electrodes with bacteria and organic electronics

SPACE TRAVEL
India launches modern earth observation satellite

Extreme weather 'major' issue for Tokyo 2020

New insight into ocean-atmosphere interaction and subsequent cloud formation

SSTL releases first images from S-Band Synthetic Aperture Radar satellite, NovaSAR-1

SPACE TRAVEL
Madrid launches drastic traffic limits to ease pollution

Honduran court convicts seven in murder of environmental activist

Newly discovered deep-sea microbes gobble greenhouse gases and perhaps oil spills, too

WSU researcher creates first model of how plastic waste moves in the environment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.