Space Industry and Business News  
CHIP TECH
Artificial materials for more efficient electronics
by Staff Writers
Geneva, Switzerland (SPX) Aug 19, 2020

Scanning transmission electron micrscopy image of superlattice consisting of an alternating sequence of 5 atomic unit cells of neodymium nickelate (blue) and 5 atomic unit cells of samarium nickelate (yellow).

We are surrounded by electronic devices. Transistors are used to power telephones, computers, televisions, hi-fi systems and game consoles as well as cars, airplanes and the like. Today's silicon-based electronics, however, consume a substantial and ever-increasing share of the world's energy.

A number of researchers are exploring the properties of materials that are more complex than silicon but that show promise for the electronic devices of tomorrow - and that are less electricity-hungry. In keeping with this approach, scientists from the University of Geneva (UNIGE) have been working in collaboration with the Swiss Federal Institute of Technology in Lausanne (EPFL), the University of Zurich, the Flatiron Institute of New York and the University of Liege.

The scientists have discovered a hitherto-unknown physical phenomenon in an artificial material made up of very thin layers of nickelates. This could be exploited to accurately control some of the material's electronic properties, such as the sudden transition from a conductive to an insulating state. It could also be used to develop new, more energy-efficient devices. You can read about this technological advance in the journal Nature Materials.

"Nickelates are known for a special characteristic: they suddenly switch from an insulating state to that of an electrical conductor when their temperature rises above a certain threshold," begins Jean-Marc Triscone, a professor in the Department of Quantum Matter Physics in UNIGE's Faculty of Science. "This transition temperature varies according to the composition of the material."

Nickelates are formed from a nickel oxide with the addition of an atom belonging to so-called "rare earth" elements (i.e. a set of 17 elements from the Periodic Table). When this rare earth is samarium (Sm), for example, the metal-insulator jump takes place at around 130C, while if it is neodymium (Nd), the threshold drops to -73C. This difference is explained by the fact that when Sm is replaced by Nd, the compound's crystal structure is deformed - and it is this deformation that controls the value of the transition temperature.

In their attempt to learn more about these materials, the Geneva-based scientists studied samples made up of repeated layers of samarium nickelate deposited on layers of neodymium nickelate - a kind of "super sandwich" where all the atoms are perfectly arranged.

Behaving like a single material
Claribel Dominguez, a researcher in the Department of Quantum Matter Physics and the article's first author, explains: "When the layers are quite thick, they behave independently, with each one keeping its own transition temperature. Oddly enough, when we refined the layers until each one was no larger than eight atoms, the entire sample began behaving like a single material, with only one large jump in conductivity at an intermediate transition temperature."

A very detailed analysis performed by electron microscope at EPFL - backed up by sophisticated theoretical developments undertaken by American and Belgian colleagues - showed that the propagation of the deformations in the crystal structure at the interfaces between the materials only takes place in two or three atomic layers.

Accordingly, it is not this distortion that explains the observed phenomenon. In reality, it is as though the furthest layers somehow know that they are very close to the interface but without being physically deformed.

It's not magic
"There's nothing magical about it," says Jennifer Fowlie, a researcher in the Department of Quantum Matter Physics and co-author of the article.

"Our study shows that maintaining an interface between a conductive region and an insulating region, as is the case in our samples, is very expensive in terms of energy. So, when the two layers are thin enough, they are able to adopt much less energy-intensive behaviour, which consists of becoming a single material, either totally metallic or totally insulating, and with a common transition temperature. And all this happens without the crystal structure being changed. This effect, or coupling, is unprecedented."

This discovery was made possible thanks to the support provided by the Swiss National Science Foundation and the Q-MAC ERC Synergy Grant (Frontiers in Quantum Materials' Control). It provides a new way of controlling the properties of artificial electronic structures, which, in this instance, is the jump in conductivity obtained by the Geneva researchers in their composite nickelate, which represents an important step forward for developing new electronic devices. Nickelates could be used in applications such as piezoelectric transistors (reacting to pressure).

More generally, the Geneva work fits into a strategy for producing artificial materials "by design", i.e. with properties that meet a specific need. This path, which is being followed by many researchers around the world, holds promise for future energy-efficient electronics.

Research paper


Related Links
University of Geneva
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
US court overturns Qualcomm defeat in antitrust case
San Francisco (AFP) Aug 11, 2020
An appeals court on Tuesday overturned a judge's ruling that Qualcomm "strangled competition," undoing a major victory scored last year by US antitrust enforcers. Shares in the California-based mobile chip giant jumped more than four percent on word that an appellate court was not convinced that Qualcomm's tactics in the market unfairly stifled competition, hurting consumers and device makers. The appeals ruling "validates our business model and patent licensing program and underscores the treme ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
'Fortnite' maker sues Apple over app restrictions

Digital content to total half Earth's mass by 2245

French firm thrusts Microsoft Flight Simulator to new take-off

Apple and Google pull 'Fortnite' from mobile app shops

CHIP TECH
U.S. Army readies 'Capability Set '23' for communications modernization

Northrop Grumman to provide key electronic warfare capabilities for AC MC-130J aircraft

South Korea's first military satellite launched

Alion to provide support to USAF for spectrum management

CHIP TECH
CHIP TECH
Air Force navigation technology satellite passes critical design review

Beidou's eye can help spot and stop rampant illegal mining

Full global service of Beidou signals space tech independence

Beidou also belongs to world

CHIP TECH
Cathay Pacific reports first-half loss of US$1.27 billion

Taiwan finalizes $62bn purchase of F-16 jets from Lockheed Martin

Textron to supply 2 Cessna Grand Caravan aircraft to Rwanda

F-16 pilots to face off against AI in simulated dogfight for DARPA

CHIP TECH
US court overturns Qualcomm defeat in antitrust case

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Spin, spin, spin: researchers enhance electron spin longevity

'Drawn-on-skin' electronics offer breakthrough in wearable monitors

CHIP TECH
China launches new optical remote-sensing satellite

Researchers take the ultimate Earth selfie

Rocket sees curling waves above Alaskan sky

Contract signed to build Europe's carbon dioxide monitoring mission

CHIP TECH
Damaged ship leaking oil off Mauritius could split: PM

Disparities in a common air pollutant are visible from space

Malaysia ditches law to combat forest fire smog

In Mecca, dreams of a 'green hajj'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.