Space Industry and Business News  
CHIP TECH
Arsenic for electronics
by Staff Writers
Washington DC (SPX) Oct 16, 2018

file illustration only

The discovery of graphene, a material made of one or very few atomic layers of carbon, started a boom. Today, such two-dimensional materials are no longer limited to carbon and are hot prospects for many applications, especially in microelectronics. In the journal Angewandte Chemie, scientists have now introduced a new 2D material: they successfully modified arsenene (arsenic in a graphene-like structure) with chloromethylene groups.

Two-dimensional materials are crystalline materials made of just a single or very few layers of atoms that often display unusual properties. However, the use of graphene for applications such as transistors is limited because it behaves more like a conductor than a semiconductor. Modified graphene and 2D materials based on other chemical elements with semiconducting properties have now been developed.

One such material is b-arsenene, a two-dimensional arsenic in a buckled honeycomb structure derived from gray arsenic. Researchers hope that modification of this previously seldom-studied material could improve its semiconducting properties and lead the way to new applications in fields such as sensing, catalysis, optoelectronics, and other semiconductor technologies.

A team at the University of Chemistry and Technology Prague (Czech Republic) and Nanyang Technical University (Singapore), led by Zdenek Sofer and Martin Pumera has now successfully produced a highly promising covalent modification of b-arsenene.

The arsenene was produced by milling gray arsenic in tetrahydrofuran. The shear forces cause two-dimensional layers to split off and disperse into the solvent.

The researchers then introduce dichloromethane and add an organic lithium compound (butyllithium). These two reagents form an intermediate called chlorocarbene, a molecule made of one carbon atom, one hydrogen atom, and one chlorine atom.

The carbon atom is short two bonding partners, a state that makes the whole class of carbene molecules highly reactive. Arsenene contains free electron pairs that "stick out" from the surface and can easily enter into bonds to chlorocarbene.

This approach leads to high coverage of the arsenene surface with chloromethylene groups, as confirmed by a variety of analysis methods (X-ray photoelectron spectroscopy, FT-IR spectroscopy, elemental analysis by transmission electron microscopy).

The modified arsenene is more stable than pure arsenene and exhibits strong luminescence and electronic properties that make it attractive for optoelectronic applications. In addition, the chloromethylene units could serve as a starting point for further interesting modifications.

Research paper


Related Links
Wiley
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Inorganic metal halide perovskite-based photodetectors for optical communication applications
Linkoping, Sweden (SPX) Oct 17, 2018
Researchers at the universities in Linkoping and Shenzhen have shown how an inorganic perovskite can be made into a cheap and efficient photodetector that transfers both text and music. "It's a promising material for future rapid optical communication", says Feng Gao, researcher at Linkoping University. "Perovskites of inorganic materials have a huge potential to influence the development of optical communication. These materials have rapid response times, are simple to manufacture, and are extrem ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Blue phosphorus mapped and measured for the first time

High entropy alloys hold the key to studying dislocation avalanches in metals

Light melts matter differently than heat, study shows

Researchers quickly harvest 2-D materials, bringing them closer to commercialization

CHIP TECH
Multi-domain command and control is coming

Airbus tests 4G 5G stratospheric balloons for defence comms

Lockheed Martin embraces agile software development to evolve signals intelligence capabilities

Lockheed Martin Introduces Mission Planning System That Connects Systems and Assets Across Domains

CHIP TECH
CHIP TECH
Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

Lockheed awarded $1.4B for first GPS IIIF satellites

CHIP TECH
SAFRAN to provide resupply services for KC-135 aerial refueling tankers

Pentagon grounds global fleet of F-35s after crash

Boeing to upgrade F/A-18, EA-18 test stations for U.S. Navy

Italy, Sweden, US bid to sell combat jets to Bulgaria

CHIP TECH
Announcing the discovery of an atomic electronic simulator

New memristor boosts accuracy and efficiency for neural networks on an atomic scale

Arsenic for electronics

New reservoir computer marks first-ever microelectromechanical neural network application

CHIP TECH
Innovative tool allows continental-scale water, energy, and land system modeling

China launches new remote sensing satellites

'Ghost imaging' could make greenhouse gas analysis more precise

Sentinel-2 maps Indonesia earthquake

CHIP TECH
Cambodia's 'Rubbish Man' schools children -- for trash

Increase in plastics waste reaching remote South Atlantic islands

US cruise ship captain on trial over French pollution charges

Microplastics found deep in sand where turtles nest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.