Space Industry and Business News  
MILITARY COMMUNICATIONS
Army project may advance quantum materials, efficient communication networks
by Staff Writers
Research Triangle Park NC (SPX) Jul 26, 2019

A US Army project at Princeton University results in an electronic array on a microchip that simulates particle interactions in a hyperbolic place, a geometric surface in which space curves away from itself at every point.

A U.S. Army project exploring novel applications of superconducting resonators has discovered these systems may be used to simulate quantum materials impossible to otherwise fabricate. Additionally, they may provide insights to open and fundamental questions in quantum mechanics and gravity.

Scientists at Princeton University, led by electrical engineering Professor Andrew Houck, built an electronic array on a microchip that simulates particle interactions in a hyperbolic plane, a geometric surface in which space curves away from itself at every point.

"This research may advance quantum simulation in a way that enables us to not only develop a better understanding of materials relevant to Army goals, but also help us explore questions at the forefront of other fields of Army relevance," said Dr. Sara Gamble, a program manager with the Army Research Office, an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory.

"In addition to the potential materials applications, the fantastic results obtained by the research team can provide insight into communication networks and ultimately enable the DOD to develop more efficient networking capabilities."

The research, published in Nature, used superconducting circuits to create a lattice that functions as a hyperbolic space. When the researchers introduce photons into the lattice, they can answer a wide range of difficult questions by observing the photons' interactions in simulated hyperbolic space.

"The problem is that if you want to study a very complicated quantum mechanical material, then computer modeling is very difficult," said Dr. Alicia Kollar, a postdoctoral research associate at the Princeton Center for Complex Materials. "We're trying to implement a model at the hardware level so that nature does the hard part of the computation for you."

The centimeter-sized chip is etched with a circuit of superconducting resonators that provide paths for microwave photons to move and interact. The resonators on the chip are arranged in a lattice pattern of heptagons, or seven-sided polygons. The structure exists on a flat plane, but simulates the unusual geometry of a hyperbolic plane.

"In normal 3-D space, a hyperbolic surface doesn't exist," said Princeton electrical engineering Prof. Andrew Houck. "This material allows us to start to think about mixing quantum mechanics and curved space in a lab setting."

Trying to force a three-dimensional sphere onto a two-dimensional plane reveals that space on a spherical plane is smaller than on a flat plane. This is why the shapes of countries appear stretched out when drawn on a flat map of the spherical Earth. In contrast, a hyperbolic plane would need to be compressed in order to fit onto a flat plane.

To simulate the effect of compressing hyperbolic space onto a flat surface, the researchers used a special type of resonator called a coplanar waveguide resonator. When microwave photons pass through this resonator, they behave in the same way whether their path is straight or meandering.

The meandering structure of the resonators offers flexibility to "squish and scrunch" the sides of the heptagons to create a flat tiling pattern, said Kollar, who is starting a faculty position at the University of Maryland and Joint Quantum Institute.

Looking at the chip's central heptagon is akin to looking through a fisheye camera lens, in which objects at the edge of the field of view appear smaller than in the center - the heptagons look smaller the farther they are from the center. This arrangement allows microwave photons that move through the resonator circuit to behave like particles in a hyperbolic space.

The chip's ability to simulate curved space could enable new investigations in quantum mechanics, including properties of energy and matter in the warped space-time around black holes. The material could also be useful for understanding complex webs of relationships in mathematical graph theory and communication networks. Kollar noted that this research could eventually aid the design of new materials.

But first, she and her colleagues will need to further develop the photonic material, both by continuing to examine its mathematical basis and by introducing elements that enable photons in the circuit to interact.

"By themselves, microwave photons don't interact with each other - they pass right through," Kollar said. Most applications of the material would require "doing something to make it so that they can tell there's another photon there."

"The research team is forming connections with researchers in other disciplines because of these results, and the addition of photon interactions into the systems will increase the application space for advancing Army capabilities even further," Gamble said.

Research paper


Related Links
US Army Research Laboratory
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILITARY COMMUNICATIONS
Newly established US Space Agency offers sneak peek at satellite layout
Washington DC (Sputnik) Jul 08, 2019
The US Defense Department recently released an outline of the new satellite architecture for its Space Development Agency (SDA), a space force military branch that will oversee the development of sensors and weapons to counter advances by Russia and China. The architectural layout of the agency's military satellite setup will consist of a layer which tracks and targets missiles threats in addition to a custody layer which will provide "all-weather custody of all identified time-critical targets," ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
Probe opened in France over radioactive water rumours

Raytheon get $27.4M payment for work on Navy's AMDR program

Mapping the Moon and Worlds Beyond

Raytheon nets $40.2M for variants of Navy's AN/SPY-6 radar

MILITARY COMMUNICATIONS
Newly established US Space Agency offers sneak peek at satellite layout

AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

MILITARY COMMUNICATIONS
MILITARY COMMUNICATIONS
European Galileo satellite navigation system resumes Initial Services

An AI technology to reveal the characteristics of animal behavior only from the trajectory

Europe's Galileo GPS system back after six-day outage

Europe's GPS rival Galileo suffers outage

MILITARY COMMUNICATIONS
Lockheed to keep Sikorsky helicopter plant open in Pennsylvania

$600M helicopter sale to Greece approved by State Department

Air Force pilot tests modified Black Hawk helicopter for first time

Bulgarian president vetoes costly deal to buy US F-16s

MILITARY COMMUNICATIONS
EU fines chipmaker Qualcomm 242 mn euros for 'predatory' pricing

Will your future computer be made using bacteria

'Tsunami' on a silicon chip: a world first for light waves

On the way to printable organic light emitting diodes

MILITARY COMMUNICATIONS
Chaos theory produces map for predicting paths of particles emitted into the atmosphere

Earth's Shining Upper Atmosphere - From the Apollo Era to the Present

Animal observation system ICARUS is switched on

PlanetiQ secures $18.7M Series B financing round

MILITARY COMMUNICATIONS
Chile's mining waste poses silent threat to humans on multiple fronts

Danish study finds 95 percent of dead petrels ingested plastic

Sri Lanka orders return of smuggled British garbage

'Bigger problems' for Trump than plastic straws









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.