Space Industry and Business News  
TECH SPACE
Army engineers develop technique to make adaptive materials
by Staff Writers
Aberdeen Proving Ground MD (SPX) Apr 18, 2018

illustration only

Engineers at the U.S. Army Research Laboratory and the University of Maryland have developed a technique that causes a composite material to become stiffer and stronger on-demand when exposed to ultraviolet light.

This on-demand control of composite behavior could enable a variety of new capabilities for future Army rotorcraft design, performance and maintenance.

ARL's Dr. Frank Gardea, a research engineer, said the focus of the research was on controlling how molecules interact with each other. He said the aim was to "have them interact in such a way that changes at a small size, or nanoscale, could lead to observed changes at a larger size, or macroscale."

Dr. Bryan Glaz, chief scientist of ARL's Vehicle Technology Directorate said "an important motivation for this work is the desire to engineer new structures, starting from the nanoscale, to enable advanced rotorcraft concepts that have been proposed in the past, but were infeasible due to limitations in current composites. One of the most important capabilities envisioned by these concepts is a significantly reduced maintenance burden due to compromises we make to fly at high speeds, he said.

The reduced scheduled maintenance of future Army aviation platforms is an important technological driver for future operating concepts.

"The enhanced mechanical properties with potentially low weight penalties, enabled by the new technique, could lead to nanocomposite based structures that would enable rotorcraft concepts that we cannot build today," Glaz said.

The joint work, recently published in Advanced Materials Interfaces (DOI: 10.1002/admi.201800038), shows that these composite materials could become 93-percent stiffer and 35-percent stronger after a five minute exposure to ultraviolet light.

The technique consists of attaching ultraviolet light reactive molecules to reinforcing agents like carbon nanotubes. These reactive reinforcing agents are then embedded in a polymer. Upon ultraviolet light exposure, a chemical reaction occurs such that the interaction between the reinforcing agents and the polymer increases, thus making the material stiffer and stronger.

The researchers said the chemistry used here is generally applicable to a variety of reinforcement/polymer combinations thereby expanding the utility of this control method to a wide range of material systems.

"This research shows that it is possible to control the overall material property of these nanocomposites through molecular engineering at the interface between the composite components. This is not only important for fundamental science but also for the optimization of structural component response," said Dr. Zhongjie Huang, a postdoctoral research fellow at the University of Maryland.

Army researchers conceived of this fundamental approach for the potential of "enabling new leap-ahead capabilities in support of the Future Vertical Lift Army Modernization Priority," officials said.

"In this instance, the development of advanced structures to enable leap-ahead Army aviation capabilities not currently feasible due to limitations in mechanical properties of current materials," Glaz said.

"This is especially important for the envisioned future operating environment which will require extended periods of operation without the opportunity to return to stationary bases for maintenance."

Some particularly attractive design options that correspond to lower mechanical loads and vibration are not currently achievable due to limitations in structural damping in hingeless blade or wing structures.

Future structures based on this work may help lead to new composites with controlled structural damping and low weight that could enable low maintenance, high speed rotorcraft concepts that are currently not feasible (e.g. soft in-plane tiltrotors).

In addition, controllable mechanical response will allow for the development of adaptive aerospace structures that could potentially accommodate mechanical loading conditions.

"The Army Research Laboratory and its partners will continue to invest in emerging and Soldier-inspired technologies that will enable more reliable, higher performing, and leap-ahead capabilities that are key to the advancement of the next generation platforms used by Soldiers," said Elias Rigas, division chief of the ARL Vehicle Applied Research Division.

Collaboration between the ARL and the University of Maryland was crucial in the development of this method.

"In our lab at UMD we have been developing unique carbon nanomaterials and chemistry but it was not until Gardea approached us did we become aware of the intriguing challenge and opportunity for reconfigurable composite materials," said Dr. YuHuang Wang, professor of the Department of Chemistry and Biochemistry at the University of Maryland.

"Together we have achieved something that is quite remarkable."

http://dx.doi.org/10.1002/admi.20180003
Related Links
US Army Research Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Flat gallium joins roster of new 2-D materials
Houston TX (SPX) Apr 17, 2018
Scientists at Rice University and the Indian Institute of Science, Bangalore, have discovered a method to make atomically flat gallium that shows promise for nanoscale electronics. The Rice lab of materials scientist Pulickel Ajayan and colleagues in India created two-dimensional gallenene, a thin film of conductive material that is to gallium what graphene is to carbon. Extracted into a two-dimensional form, the novel material appears to have an affinity for binding with semiconductors like ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NIST's new quantum method generates really random numbers

New type of opal formed by common seaweed discovered

Flat gallium joins roster of new 2-D materials

Polymer-graphene nanocarpets to electrify smart fabrics

TECH SPACE
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

TECH SPACE
TECH SPACE
China opens first overseas center for BeiDou navigation satellite system in Tunisia

PSLV-C41 Successfully Launches IRNSS-1I Navigation Satellite

India Resets Navigation Satellite Developed to Replace GPS

DT Research introduces new rugged tablet with scientific-grade GNSS

TECH SPACE
F-35 Completes Most Comprehensive Flight Test Program in Aviation History

Airbus aiming to step up A320neo production

Boeing tapped to support P-8A Poseidon training

L3 wins Navy contract for fighter aircraft support

TECH SPACE
Novel thermal phases of topological quantum matter in the lab

MIPT delivers world's first biosensor chips based on copper and graphene oxide

Polarization has strong impact on electrons, study shows

Wiggling atoms switch the electric polarization of crystals

TECH SPACE
NASA's world tour of the atmosphere reveals surprises along the way

NASA mapping hurricane damage across Everglades

First global carbon dioxide maps produced by Chinese observation satellite

China to launch new weather satellite

TECH SPACE
Kitchen cabinets could leach harmful chemical compounds into the air

UK to ban sale of plastic straws to tackle marine waste

UK designer Christopher Raeburn transforms the unexpected

Fresh clashes as anti-capitalists attempt to rebuild French camp









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.