![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Brooks Hays Birmingham, Ala. (UPI) Jun 22, 2016
Sea sponges are mostly stationary, and without speed or a protective shell, their defense system is largely reliant on chemical compounds. And because bacteria poses one of sponges' greatest threats, many of their compounds boast antibacterial qualities. Recently, scientists discovered a chemical compound produced by the sponge species Dendrilla membranosa that kills MRSA, methicillin-resistant Staphylococcus aureus. MRSA and MRSA-related complications kill an average of 11,000 patients every year in the United States. For the past 20 years, James McClintock and Chuck Amsler, biology professors at the University of Alabama, Birmingham, as well as Bill Baker, a biologist at the University of South Florida, have been studying the defense mechanisms of sponges, algae and other marine invertebrates in the frigid, oxygen-rich waters of Antarctica. Previously, the trio of researchers identified compounds with promise in the fights against H1N1 flu virus and melanoma skin cancer. Their latest discovery, darwinolide, is named after the sponge's family name, Darwinellidae. In lab tests, it killed 98 percent of MRSA cells. "It's a defensive compound against microbes," McClintock said in a news release, "with some very interesting properties." One of those properties is an ability to penetrate a protective biofilm deployed by bacterial infections. The protective biofilm -- a barrier of carbohydrates, proteins and DNA -- erected by MRSA can't be penetrated by any drugs currently on the market. It's what makes treating MRSA and other infections resistant to antibiotics, so-called superbugs, so difficult. "Darwinolide differs from previous, somewhat similar, drug candidates from sponges because its central ring structure is rearranged in an unusual way," Amsler explained. "If that rearrangement of the chemical backbone is in part responsible for the effectiveness against biofilm bacteria, it might be able to serve as a chemical scaffold for the development of other kinds of drugs targeting pathogens within biofilms." Because harvesting Antarctic sponges on a mass scale isn't practical or environmentally sound, scientists must now figure out how to synthesize darwinolide in the lab. Luckily, 99 percent of natural compounds can be reproduced by chemists. After that, researchers will need to examine how exactly dawinolide works to break through bacteria bioflim and attack the cells. While an FDA-approved darwinolide-inspired drug may be years away, the compounds potential has researchers excited. And if a drug is produced, the researchers' respective universities stand to profit. "If a drug is developed, UAB would stand to receive something on the order of 20 percent of the royalties," McClintock said. McClintock and his researcher partners recently detailed their discovery in the journal Organic Letters.
Related Links Hospital and Medical News at InternDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |