Space Industry and Business News  
EXO WORLDS
Ancient microbes may help us find extraterrestrial life forms
by Staff Writers
Riverside CA (SPX) Jun 28, 2022

Artist's rendering of the process by which microbes captured sunlight for energy with rhodopsin proteins.

Using light-capturing proteins in living microbes, scientists have reconstructed what life was like for some of Earth's earliest organisms. These efforts could help us recognize signs of life on other planets, whose atmospheres may more closely resemble our pre-oxygen planet.

The earliest living things, including bacteria and single-celled organisms called archaea, inhabited a primarily oceanic planet without an ozone layer to protect them from the sun's radiation. These microbes evolved rhodopsins - proteins with the ability to turn sunlight into energy, using them to power cellular processes.

"On early Earth, energy may have been very scarce. Bacteria and archaea figured out how to use the plentiful energy from the sun without the complex biomolecules required for photosynthesis," said UC Riverside astrobiologist Edward Schwieterman, who is co-author of a study describing the research.

Rhodopsins are related to rods and cones in human eyes that enable us to distinguish between light and dark and see colors. They are also widely distributed among modern organisms and environments like saltern ponds, which present a rainbow of vibrant colors.

Using machine learning, the research team analyzed rhodopsin protein sequences from all over the world and tracked how they evolved over time. Then, they created a type of family tree that allowed them to reconstruct rhodopsins from 2.5 to 4 billion years ago, and the conditions that they likely faced.

Their findings are detailed in a paper published in the journal Molecular Biology and Evolution.

"Life as we know it is as much an expression of the conditions on our planet as it is of life itself. We resurrected ancient DNA sequences of one molecule, and it allowed us to link to the biology and environment of the past," said University of Wisconsin-Madison astrobiologist and study lead Betul Kacar.

"It's like taking the DNA of many grandchildren to reproduce the DNA of their grandparents. Only, it's not grandparents, but tiny things that lived billions of years ago, all over the world," Schwieterman said.

Modern rhodopsins absorb blue, green, yellow and orange light, and can appear pink, purple or red by virtue of the light they are not absorbing or complementary pigments. However, according to the team's reconstructions, ancient rhodopsins were tuned to absorb mainly blue and green light.

Since ancient Earth did not yet have the benefit of an ozone layer, the research team theorizes that billions-of-years-old microbes lived many meters down in the water column to shield themselves from intense UVB radiation at the surface.

Blue and green light best penetrates water, so it is likely that the earliest rhodopsins primarily absorbed these colors. "This could be the best combination of being shielded and still being able to absorb light for energy," Schwieterman said.

After the Great Oxidation Event, more than 2 billion years ago, Earth's atmosphere began to experience a rise in the amount of oxygen. With additional oxygen and ozone in the atmosphere, rhodopsins evolved to absorb additional colors of light.

Rhodopsins today are able to absorb colors of light that chlorophyll pigments in plants cannot. Though they represent completely unrelated and independent light capture mechanisms, they absorb complementary areas of the spectrum.

"This suggests co-evolution, in that one group of organisms is exploiting light not absorbed by the other," Schwieterman said. "This could have been because rhodopsins developed first and screened out the green light, so chlorophylls later developed to absorb the rest. Or it could have happened the other way around."

Moving forward, the team is hoping to resurrect model rhodopsins in a laboratory using synthetic biology techniques.

"We engineer the ancient DNA inside modern genomes and reprogram the bugs to behave how we believe they did millions of years ago. Rhodopsin is a great candidate for laboratory time-travel studies," Kacar said.

Ultimately, the team is pleased about the possibilities for research opened up by techniques they used for this study. Since other signs of life from the deep geologic past need to be physically preserved and only some molecules are amenable to long-term preservation, there are many aspects of life's history that have not been accessible to researchers until now.

"Our study demonstrates for the first time that the behavioral histories of enzymes are amenable to evolutionary reconstruction in ways that conventional molecular biosignatures are not," Kacar said.

The team also hopes to take what they learned about the behavior of early Earth organisms and use it to search the skies for signs of life on other planets.

"Early Earth is an alien environment compared to our world today. Understanding how organisms here have changed with time and in different environments is going to teach us crucial things about how to search for and recognize life elsewhere," Schwieterman said.

Research Report:Earliest Photic Zone Niches Probed by Ancestral Microbial Rhodopsins


Related Links
University of California - Riverside
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Asteroid samples contain 'clues to origin of life': Japan scientists
Tokyo (AFP) June 10, 2022
Asteroid dust collected by a Japanese space probe contains organic material that shows some of the building blocks of life on Earth may have been formed in space, scientists said Friday. Pristine material from the asteroid Ryugu was brought back to Earth in 2020 after a six-year mission to the celestial body around 300 million kilometres away. But scientists are only just beginning to discover its secrets in the first studies on small portions of the 5.4 grams (0.2 ounces) of dust and dark, tiny ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
ICEYE expands its business to offer complete satellite missions for customers

Pro-China online network targets mineral firms: report

Quantum sensor can detect electromagnetic signals of any frequency

California passes sweeping law to reduce non-recyclable plastic

EXO WORLDS
Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

Raytheon Intelligence and Space conducts Troposcatter comms test for US Army

SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

EXO WORLDS
EXO WORLDS
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

EXO WORLDS
NASA works with industry to develop flight tech to reduce carbon emissions

EGNOS technology for Africa - ESA signs deal with ASECNA

Four dead in Russian military cargo plane crash

Netherlands to limit flights at Amsterdam's main airport

EXO WORLDS
Electrospinning promises major improvements in wearable technology

Nanostructured surfaces for future quantum computer chips

A golden ticket to smaller electronics

Controlled synthesis of crystal flakes paves path for advanced future electronics

EXO WORLDS
How do you process space data and imagery in low earth orbit?

Contract secures design for ESA's FORUM satellite

Airbus delivers third radar for Copernicus' Sentinel-1 mission with a world premiere

China launches new batch of remote sensing satellites

EXO WORLDS
India bans many single-use plastics to tackle waste

Pollution linked to 10% of cancer cases in Europe: report

Ancient Afghan Buddhist city threatened by Chinese copper mine

China's mass testing mantra is building a waste mountain









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.