Space Industry and Business News  
EARLY EARTH
Ancient ants leaving a modern trail
by Staff Writers
Onna, Japan (SPX) Jun 10, 2016


This map depicts areas included in the dataset of ant species occurrence records. The white shows where the land used to exist in the Pleistocene era. Image courtesy OIST. For a larger version of this image please go here.

It is thought that ants evolved about 150 million years ago and have risen to dominance in the past 60 million years. They are now everywhere and while they are not always welcome on your kitchen counter, they are critical to ecosystems around the world for many roles, including seed dispersal and decomposition. There are a variety of factors that can impact diversity in geographically-clustered ant communities, but it can be difficult to decipher the most important biogeographic influences on these ant populations.

Patricia Wepfer, Dr. Benoit Guenard (currently at the University of Hong Kong), and Prof. Evan Economo from the Biodiversity and Biocomplexity Unit at Okinawa Institute of Science and Technology Graduate University (OIST) unravelled the web of biogeographic components to find the influences that most significantly affect ant communities. They recently published their results in the Journal of Biogeography.

"I was interested in how different these communities could be across Asia," Patricia Wepfer, first author and OIST Ph.D. student said. "We wanted to know how a community [of ants] is composed in different places and why it is composed in that way."

The team assembled a large dataset of ant species occurrence records for 159 areas in Asia ranging from the Ryukyu Islands to Taiwan and coastal regions of South Korea. From this data, they determined which ants existed where and what factors may be affecting the communities.

They then analysed whether the climate - temperature, rainfall - and/or space - geographical distance, water barriers - made more of a difference to the composition of ant communities. The researchers also looked more closely to see whether historical land connections significantly affect ant communities.

During the Last Glacial Maximum in the Pleistocene Epoch, approximately 26,000 years ago, many areas and islands in Asia were connected. As the land moved, the ocean began to cover these areas and create separate land masses. Surprisingly, ant population configurations of today are very much influenced by these past land connections that existed in the Pleistocene.

"Interestingly, the past land connections during the Last Glacial Maximum are more important in explaining the existing ant community patterns, than the way land is configured now," Wepfer said. "This may be due to the fact that historical land connections existed for a much longer time than the connections that we have today and ants take a long time to distribute."

While historical land connections are the most surprising factor in determining the make-up of a geographically-clustered ant community, ecologists also have to consider current and recognized influences, such as the temperature. From the data, the team determined that the temperature played the largest role in the differentiation between ant communities. With the advent of climate change, this may have many implications on ant ecosystems, as well as the ecosystems they work to sustain.

"Temperature is the dominant factor and plays a major role in shaping ant communities," Wepfer said. "Climate change will likely change these ant communities."

It is well-known in ecology that temperature is of the utmost importance in shaping species distributions, but it is important to keep in mind the spatial influence upon ant communities.

"In order to understand why species are where they are, we need to think about the current climate and land connections between areas," Economo said. "But also what the connections between areas were during the Last Glacial Maximum, which is when the sea levels were very low."

The historical land connections can reveal how much a structural change, whether that is the shifting of continents or even on a much smaller scale, like building a dam or paving a road, can influence ecosystems.

"It is important to be aware of things that happen in the past for species composition today," Wepfer said. "Whatever major structural changes that are made to the environment can result in different connectivity between habitats and spaces."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Scientists discover oldest plant root stem cells
Oxford UK (SPX) Jun 03, 2016
Scientists at Oxford University have discovered the oldest known population of plant root stem cells in a 320 million-year-old fossil. The cells, which gave rise to the roots of an ancient plant, were found in a fossilised root tip held in the Oxford University Herbaria. As well as revealing the oldest plant root stem cells identified to date, the research also marks the first time an acti ... read more


EARLY EARTH
Lean Xbox One eyes gamers as PlayStation VR turns heads

E3 video game show comes with rise of celebrity player

Neutrons reveal unexpected magnetism in rare-earth alloy

Plant lignin improves efficacy of sunscreen

EARLY EARTH
Air Force receives Rockwell Collins receivers

UK Looking to Design Next-Gen Military Satellites

Airbus DS to provide German armed forces with satcomm services for the next 7 years

L-3 Communications to open new facility in Canada

EARLY EARTH
EchoStar XVIII and BRIsat are installed on Arianespace's Ariane 5

United Launch Alliance gets $138 million Atlas V contract

SpaceX makes fourth successful rocket landing

Arianespace to supply payload dispenser systems for OneWeb constellation

EARLY EARTH
Russian Glonass-M satellite reaches target orbit

And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

EARLY EARTH
Nigeria hoping for U.S. approval of Super Tucano sale

Danish parliament approves F-35 buy

First AH-64 Apache Guardian arrives in South Korea for army

Canada PM Trudeau shows doubts on F-35 fighter jet

EARLY EARTH
Ferroelectric materials react unexpectedly to strain

Spintronics development gets boost with new findings into ferromagnetism in Mn-doped GaAs

Skyrmions a la carte

Scientists build gene circuits capable of complex computation

EARLY EARTH
Airbus Defence and Space has completed PeruSAT-1 in less than 24 months

Constraining the composition of Earth's interior with elasticity of minerals

Mapping that sinking feeling

New cheap method of surveying landscapes can capture environmental change

EARLY EARTH
Knowledge of chemical munitions dumped at sea expands from international collaboration

Indonesia lashes out at Singapore in new haze row

China probes school playing fields after kids sickened

How 'super organisms' evolve in response to toxic environments









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.