Space Industry and Business News  
MARSDAILY
Ancient Mars bombardment likely enhanced life-supporting habitat
by Staff Writers
Boulder CO (SPX) Apr 06, 2016


Ancient impacts on Mars likely enhanced climate conditions for life. Image courtesy NASA. For a larger version of this image please go here.

The bombardment of Mars some 4 billion years ago by comets and asteroids as large as West Virginia likely enhanced climate conditions enough to make the planet more conducive to life, at least for a time, says a new University of Colorado Boulder study.

CU-Boulder Professor Stephen Mojzsis said if early Mars was as barren and cold as it is today, massive asteroid and comet impacts would have produced enough heat to melt subsurface ice. The impacts would have produced regional hydrothermal systems on Mars similar to those in Yellowstone National Park, which today harbor chemically powered microbes, some of which can survive boiling in hot springs or inhabiting water acidic enough to dissolve nails.

Scientists have long known there was once running water on Mars, as evidenced by ancient river valleys, deltas and parts of lake beds, said Mojzsis. In addition to producing hydrothermal regions in portions of Mars' fractured and melted crust, a massive impact could have temporarily increased the planet's atmospheric pressure, periodically heating Mars up enough to "re-start" a dormant water cycle.

"This study shows the ancient bombardment of Mars by comets and asteroids would have been greatly beneficial to life there, if life was present," said Mojzsis, a professor in the geological sciences department. "But up to now we have no convincing evidence life ever existed there, so we don't know if early Mars was a crucible of life or a haven for life."

Published in Earth and Planetary Science Letters, the study was conducted by Mojzsis and Oleg Abramov, a researcher at the U.S. Geological Survey in Flagstaff, Arizona and a former CU-Boulder research scientist under Mojzsis.

Much of the action on Mars occurred during a period known as the Late Heavy Bombardment about 3.9 billion years ago when the developing solar system was a shooting gallery of comets, asteroids, moons and planets. Unlike Earth, which has been "resurfaced" time and again by erosion and plate tectonics, heavy cratering is still evident on Mercury, Earth's moon and Mars, Mojzsis said.

Mojzsis and Abramov used the Janus supercomputer cluster at the University of Colorado Computing facility for some of the 3-D modeling used in the study. They looked at temperatures beneath millions of individual craters in their computer simulations to assess heating and cooling, as well as the effects of impacts on Mars from different angles and velocities. A single model comprising the whole surface of Mars took up to two weeks to run on the supercomputer cluster, said Mojzsis.

The study showed the heating of ancient Mars caused by individual asteroid collisions would likely have lasted only a few million years before the Red Planet - about one and one-half times the distance to the sun than Earth - defaulted to today's cold and inhospitable conditions.

"None of the models we ran could keep Mars consistently warm over long periods," said Mojzsis.

While Mars is believed to have spent most of its history in a cold state, Earth was likely habitable over almost its entire existence. A 2009 study by Mojzsis and Abramov showed that the Late Heavy Bombardment period in the inner solar system nearly 4 billion years ago did not have the firepower to extinguish potential early life on Earth and may have even given it a boost if it was present.

"What really saved the day for Earth was its oceans," Mojzsis said. "In order to wipe out life here, the oceans would have had to have been boiled away. Those extreme conditions in that time period are beyond the realm of scientific possibility."

The new Mars study was funded by NASA and the John Templeton Foundation. Mojzsis recently received an $800,000 grant from the Foundation for Applied Molecular Evolution in Alachua, Florida made possible by the Templeton Foundation to better understand early Earth and the beginning of life before about 4 billion years ago.

"Studies of Mars provide us with valuable information about our own place in the solar system," he said. "Our next steps are to model similar bombardment on Mercury and Venus to better understand the evolution of the inner solar system and apply that knowledge to studies of planets around other stars."

Mojzsis will meet with scientists from the California Institute of Technology and NASA's Jet Propulsion Laboratory in Pasadena next month to discuss possible landing sites and research targets for the upcoming Mars 2020 rover mission.

Mars 2020 will carry instruments to seek out past life or present life, hunt for habitable areas and demonstrate technologies for use on future robotic and human missions to Mars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Colorado at Boulder
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
Site of Martian lakes linked to ancient habitable environment
Tucson AZ (SPX) Feb 10, 2016
Groundwater circulation beneath a massive tectonic rift zone located along the flanks of some the solar system's largest volcanic plateaus resulted in the formation more than 3 billion years ago of some the deepest basins on Mars, according to a new paper by Planetary Science Institute Senior Scientist J. Alexis Palmero Rodriguez. These basins could have been episodically covered, perhaps ... read more


MARSDAILY
How to make metal alloys that stand up to hydrogen

More efficient system for the synthesis of organic compounds

Study finds metal foam handles heat better than steel

Physicists 'undiscovered' technetium carbide

MARSDAILY
Harris supplies tactical radios to African country

In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

MARSDAILY
Atlas V OA-6 Anomaly Status

Reusing Falcon 9 boosters would slash costs by 30 percent

Water System Tested on Crew Access Arm at KSC

Roscosmos Says Reports on Sea Launch Project Sale Might Be True

MARSDAILY
Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

Russia's Roscosmos to Hand Over Glonass Infrastructure to MoD in 2016

China launches 22nd BeiDou navigation satellite

MARSDAILY
IAI producing C4 systems for Israeli F-35s

Rheinmetall providing training aids for KC-390

Russia bolsters fighter fleet with new Su-30SM buy

Australia says possible MH370 debris found on Mauritius

MARSDAILY
Second quantum revolution a reality with chip-based atomic physics

Hybrid pixel array detectors enter the low-noise regime

Taiwan's TSMC signs deal for $3 bn plant in China

New terahertz source could strengthen sensing applications

MARSDAILY
NASA, Japan make ASTER earth data available at no cost

Satellites key to monitoring harmful emissions: space agencies

Tracking deer by NASA satellite

Fairy circles discovered in Australia by researchers

MARSDAILY
Common pesticides kill amphibian parasites

Beirut trash clean-up begins as critics cry foul

Mercury rising?

'Chemical Chernobyl': activists say toxic dump threatens St. Petersburg









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.