Space Industry and Business News  
TIME AND SPACE
An ocean of galaxies awaits
by Staff Writers
Pasadena CA (SPX) Jul 14, 2022

COMAP's radio dish at Owens Valley Radio Observatory.

Sometime around 400 million years after the birth of our universe, the first stars began to form. The universe's so-called dark ages came to an end and a new light-filled era began. More and more galaxies began to take shape and served as factories for churning out new stars, a process that reached a peak about 4 billion years after the Big Bang.

Luckily for astronomers, this bygone era can be observed. Distant light takes time to reach us, and our telescopes can pick up light emitted by galaxies and stars billions of years ago (our universe is 13.8 billion years old). But the details of this chapter in our universe's history are murky since most of the stars being formed are faint and hidden by dust.

A new Caltech project, called COMAP (CO Mapping Array Project), will offer us a new glimpse into this epoch of galaxy assembly, helping to answer questions about what really caused the universe's rapid increase in the production of stars.

"Most instruments might see the tip of an iceberg when looking at galaxies from this period," says Kieran Cleary, the project's principal investigator and the associate director of Caltech's Owens Valley Radio Observatory (OVRO). "But COMAP will see what lies underneath, hidden from view."

The current phase of the project uses a 10.4-meter "Leighton" radio dish at OVRO to study the most common kinds of star-forming galaxies spread across space and time, including those that are too difficult to view in other ways because they are too faint or hidden by dust.

The radio observations trace the raw material from which stars are made: cold hydrogen gas. This gas is not easy to pinpoint directly, so instead COMAP measures bright radio signals from carbon monoxide (CO) gas, which is always present along with the hydrogen. COMAP's radio camera is the most powerful ever built to detect these radio signals.

The first science results from the project have just been published in seven papers in The Astrophysical Journal. Based on observations taken one year into a planned five-year survey, COMAP set upper limits on how much cold gas must be present in galaxies at the epoch being studied, including the ones that are normally too faint and dusty to see.

While the project has not yet made a direct detection of the CO signal, these early results demonstrate that it is on track to do so by the end of the initial five-year survey and ultimately will paint the most comprehensive picture yet of the universe's history of star formation.

"Looking to the future of the project, we aim to use this technique to successively look further and further back in time," Cleary says. "Starting 4 billion years after the Big Bang, we will keep pushing back in time until we reach the epoch of the first stars and galaxies, a couple of billion years earlier."

Anthony Readhead, the co-principal investigator and the Robinson Professor of Astronomy, Emeritus, says that COMAP will see the not only the first epoch of stars and galaxies, but also their epic decline. "We will observe star formation rising and falling like an ocean tide," he says.

COMAP works by capturing blurry radio images of clusters of galaxies over cosmic time rather than sharp images of individual galaxies. This blurriness enables the astronomers to efficiently catch all the radio light coming from a larger pool of galaxies, even the faintest and dustiest ones that have never been seen.

"In this way, we can find the average properties of typical, faint galaxies without needing to know very precisely where any individual galaxy is located," explains Cleary. "This is like finding the temperature of a large volume of water using a thermometer rather than analyzing the motions of the individual water molecules."

Research Report:Focus on Early Science Results from the CO Mapping Array Project (COMAP)


Related Links
California Institute of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists discover how first quasars in universe formed
Portsmouth UK (SPX) Jul 07, 2022
The mystery of how the first quasars in the universe formed - something that has baffled scientists for nearly 20 years - has now been solved by a team of astrophysicists whose findings are published in Nature. The existence of over 200 quasars powered by supermassive black holes less than a billion years after the Big Bang had remained one of the outstanding problems in astrophysics because it was never fully understood how they formed so early. The team of experts led by Dr Daniel Whalen f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Space rocket junk could have deadly consequences unless governments act

Swarm dodges collision during climb to escape Sun's wrath

SIRI-2 to qualify technologies for radiation detection in space

Researchers use quantum-inspired approach to increase lidar resolution

TIME AND SPACE
SKYNET 6A satellite passes Critical Design Review

New satellite series adds capabilities to China's data relay capacity

Airbus to provide 42 satellite platforms and services to Northrop Grumman for the US Space Development Agency program

Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

TIME AND SPACE
TIME AND SPACE
Space Systems Command awards $147.7 million GPS support contract to Lockheed Martin Space Systems Company

Safran acquires Orolia and plans to become the world leader in resilient PNT

The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

TIME AND SPACE
Aviation buzzing for return of Farnborough airshow

Long haul to decarbonisation for aviation industry

Hong Kong suspends 'not effective' Covid flight ban

The hawk has landed: Braking mid-air to prioritize safety over energy or speed

TIME AND SPACE
Optical wireless: The new frontier for self-driving vehicles and portable devices in a chip

Taiwan's TSMC second-quarter revenue rise 44 percent

Giant Rashba semiconductors show unconventional dynamics

Physicists work to shrink microchips with first one-dimensional helium model system

TIME AND SPACE
Planet signs contract to provide German Federal Agencies with daily satellite imagery

NASA's New Mineral Dust Detector Readies for Launch

BlackSky Wins $4.4 Million IARPA Contract to Provide Advanced Artificial Intelligence for Space-Based Dynamic Monitoring

Great Air Quality for the Great Lakes Region

TIME AND SPACE
Kyiv sounds alarm over war-ravaged nature, EU vows aid

'They're everywhere': microplastics in oceans, air and human body

Plans to rebuild Ukraine should address environment, EU commissioner says

India bans many single-use plastics to tackle waste









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.