Space Industry and Business News  
TIME AND SPACE
An 80-year-old ferroelectricity mystery solved
by Staff Writers
Linkoping, Sweden (SPX) Oct 24, 2018

The organic ferroelectric material consists of nanometer-sized stacks of disk-like molecules that act as 'hysterons' with ideal ferroelectric behavior. Combined in a macroscopic memory device, the characteristic rounded-off hysteresis loop results.

Only now in 2018 have researchers successfully demonstrated that hypothetical 'particles' that were proposed by Franz Preisach in 1935 actually exist. In an article published in Nature Communications, scientists from the universities in Linkoping and Eindhoven show why ferroelectric materials act as they do.

Ferroelectricity is the lesser-known twin of ferromagnetism. Iron, cobalt and nickel are examples of common ferromagnetic materials. The electrons in such materials function as small magnets, dipoles, with a north pole and a south pole. In a ferroelectric, the dipoles are not magnetic but electric and have a positive and negative pole.

In absence of an applied magnetic (for a ferromagnet) or electric (for a ferroelectric) field, the orientation of the dipoles is random. When a sufficiently strong field is applied, the dipoles align with it. This field is known as the critical (or coercive) field. Surprisingly, in a 'ferroic' material the alignment remains when the field is removed: the material is permanently polarized.

To change the direction of the polarization, a field at least as strong as the critical field must be applied in the opposite direction. This effect is known as hysteresis: the behaviour of the material depends on what has previously happened to it. The hysteresis makes these materials highly suitable as rewritable memory, in for example hard disks.

For a piece of ideal ferroelectric material, the whole piece switches its polarization when the critical field is reached and it does so with a well-defined speed. In real ferroelectric materials, different parts of the material switch polarization at different critical fields, and at different speeds. Understanding this non-ideality is key to the application in memories.

A model for ferroelectricity and ferromagnetism was developed by the German researcher Franz Preisach as early as 1935. The purely mathematical Preisach model describes ferroic materials as a large collection of small independent modules called hysterons. Each hysteron shows ideal ferroic behaviour, but has its own critical field that can differ from hysteron to hysteron. I

t has been generally agreed that the model gives an accurate description of real materials, but scientists have not understood the physics on which the model is built: what are the hysterons? Why do their critical fields differ as they do? In other words, why do ferroelectric materials act as they do?

Professor Martijn Kemerink's research group (Complex Materials and Devices at LiU), in collaboration with researchers at the University of Eindhoven, has now studied two organic ferroelectric model systems and found the explanation.

The molecules in the studied organic ferroelectric materials like to lie on top of each other, forming cylindrical stacks of around a nanometre wide and several nanometres long.

"We could prove that these stacks actually are the sought-after hysterons. The trick is that they have different sizes and strongly interact with each other since they are so closely packed. Apart from its own unique size, each stack therefore 'feels a different environment of other stacks, which explains the Preisach distribution", says Martijn Kemerink.

The researchers have shown that the non-ideal switching of a ferroelectric material depends on its nanostructure - in particular, how many stacks interact with each other, and the details of the way in which they do this.

"We had to develop new methods to measure the switching of individual hysterons to test our ideas. Now that we have shown how the molecules interact with each other on the nanometre scale, we can predict the shape of the hysteresis curve.

"This also explains why the phenomenon acts as it does. We have shown how the hysteron distribution arises in two specific organic ferroelectric materials, but it's quite likely that this is a general phenomenon. I am extremely proud of my doctoral students, Indre Urbanaviciute and Tim Cornelissen, who have managed to achieve this", says Martijn Kemerink.

The results can guide the design of materials for new, so-called multi-bit memories, and are a further step along the pathway to the small and flexible memories of the future.

Research Report: Physical reality of the Preisach model for organic ferroelectrics


Related Links
Linkoping University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New study sets a size limit for undiscovered subatomic particles
New Haven CT (SPX) Oct 18, 2018
A new study suggests that many theorized heavy particles, if they exist at all, do not have the properties needed to explain the predominance of matter over antimatter in the universe. If confirmed, the findings would force significant revisions to several prominent theories posed as alternatives to the Standard Model of particle physics, which was developed in the early 1970s. Researchers from Yale, Harvard, and Northwestern University conducted the study, which was published Oct. 17 in the journ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Virtual reality can boost empathy

Molecular memory can be used to increase the memory capacity of hard disks

Use of raw materials to double by 2060: OECD

Origami, 3D printing merge to make complex structures in one shot

TIME AND SPACE
ESA selects Satconsult to design new approach to scheduling secure satcom resources

Multi-domain command and control is coming

Airbus tests 4G 5G stratospheric balloons for defence comms

Lockheed Martin embraces agile software development to evolve signals intelligence capabilities

TIME AND SPACE
TIME AND SPACE
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

TIME AND SPACE
Merging mathematical and physical models toward building a more perfect flying vehicle

Rockwell Collins wins bid for Navy aircraft repair

Northrop contracted for electronics upgrades on Growler, Prowler

AAR, Boeing, StandardAero contracted for P-8A Poseidon support

TIME AND SPACE
Printed 3D supercapacitor electrode breaks records in lab tests

First proof of quantum computer advantage

New memristor boosts accuracy and efficiency for neural networks on an atomic scale

New reservoir computer marks first-ever microelectromechanical neural network application

TIME AND SPACE
African smoke-cloud connection target of NASA airborne flights

Innovative tool allows continental-scale water, energy, and land system modeling

China launches new remote sensing satellites

After two long careers, QuikSCAT rings down the curtain

TIME AND SPACE
The impact of microplastics on the environment unclear, study suggests

Cambodia's 'Rubbish Man' schools children -- for trash

Delhi braces for pollution with emergency plan

Increase in plastics waste reaching remote South Atlantic islands









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.