Space Industry and Business News  
BIO FUEL
Algae discovery offers potential for sustainable biofuels
by Staff Writers
St. Louis MO (SPX) Oct 24, 2016


Fluorescence micrograph of vip1-1 cells from the alga Chlamydomonas filled with oil droplets that are colored bright green. Image courtesy Inmaculada Couso, Ph.D., and James Umen, Ph.D., Donald Danforth Plant Science Center. For a larger version of this image please go here.

James Umen, Ph.D., associate member at Donald Danforth Plant Science Center, and colleagues have discovered a way to make algae better oil producers without sacrificing growth. The findings were published September 6, in a paper titled, "Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas," in The Plant Cell.

Umen and his team including lead author Inmaculada Couso, Ph.D., and collaborators Bradley Evans Ph.D., director, Proteomics and Mass Spectrometry and Doug Allen, Ph.D., USDA Research Scientist at the Danforth Center identified a mutation in the green alga Chlamydomonas which substantially removes a constraint that is widely observed in micro-algae where the highest yields of oil can only be obtained from starving cultures.

Umen and his team found the oil-accumulating mutation in Chlamydomonas, called vip1-1, while investigating how two conserved signaling systems interact with one another. One system involves a protein called TOR (target of rapamycin) whose activity is tuned to match cell growth rate with nutrient levels in the environment.

The other system involves a family of proteins called VIP that produce highly phosphosphorylated small molecules called inositol polyphosphates that are thought to act as intracellular signals, but whose function in algae is not well-defined. The team found that when VIP activity was reduced by the vip1-1 mutation, cell growth became extremely sensitized to changes in TOR activity; but unexpectedly, this sensitivity was dependent on the sources of carbon nutrients that cells had available.

When TOR-inhibited vip1-1 cells were given light for photosynthesis and supplemented with acetate-- a "free" source of extra carbon--their growth was completely arrested. However, the vip1-1 mutation had no impact on TOR-inhibited cell growth when acetate was removed and atmospheric CO2 was the only carbon source.

The connection between acetate and the growth behavior of vip1-1 cells led Umen and his team to investigate the mutant further to see if it had other metabolic alterations that could be detected without perturbing TOR signaling.

Remarkably, they found that actively growing vip1 cells were oil overaccumulators that made extra storage oil compared to normal cells, and did so without incurring a significant growth penalty.

Moreover, under starvation conditions when normal cells boost their oil content significantly, vip1-1 cells increased it even more with up to double the yields seen in normal cells.

"Our study reveals a new way to understand how cells control carbon metabolism and storage," said Inmaculada Couso, Ph.D., post-doctoral researcher, Institute of Plant Biochemistry and Photosynthesis.

"As we decipher the inositol polyphosphate signaling code, we open up the prospect of being able to reprogram metabolism and make algae better producers of oil or other high value carbon-rich compounds."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Donald Danforth Plant Science Center
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
With designer lignin, biofuels researchers reproduced evolutionary path
Madison WI (SPX) Oct 18, 2016
When scientists reported in 2014 that they had successfully engineered a poplar plant "designed for deconstruction," the finding made international news. The highly degradable poplar, the first of its kind, could substantially reduce the energy use and cost of converting biomass to a number of products, including biofuels, pulp and paper. Now, some of those same researchers are reporting a ... read more


BIO FUEL
Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday

Efficiency plus versatility

New kind of supercapacitor made without carbon

BIO FUEL
Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

TeleCommunications Systems continues USMC satellite services

SES unveils new tactical surveillance and communications solution

BIO FUEL
Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

More commercial spaceports going ahead

Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

BIO FUEL
Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

Lockheed gets $395 million GPS III Space Vehicle contract modification

BIO FUEL
US claims trade victory over China over business jet tax

MH370 hunters to probe underwater objects: Australia

Poland plans new tender for helicopters after Airbus row

L-3 unit begins KC-10 tanker support

BIO FUEL
Sandia, Harvard team create first quantum computer bridge

Quantum computers: 10-fold boost in stability achieved

Infrared brings to light nanoscale molecular arrangement

Researchers develop DNA-based single-electron electronic devices

BIO FUEL
Airbus Defence and Space-built PeruSAT-1 delivers first images

Data improves hurricane forecasts, but uncertainties remain

NASA maps help gauge Italy earthquake damage

Magnetic oceans and electric Earth

BIO FUEL
Scientists discover supramolecule could help reduce nuclear waste

Coffee-infused foam removes lead from contaminated water

Great Pacific Garbage Patch aerial survey yields bad news

Washing clothes releases 1000s of microplastic particles into environment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.