Space Industry and Business News  
BIO FUEL
Alcohols as carbon radical precursors
by Staff Writers
Kanazawa, Japan (SPX) Nov 05, 2018

This is a direct use of alcohols for C-C bond formation reactions.

Alcohols play a pivotal role in organic synthesis because they are ubiquitous and can be used in a variety of well-established transformations. However, in C-C bond formation reactions, despite being central to organic synthesis, alcohols are mostly employed in an indirect fashion. Many alcohol-based reactions necessitate tedious pre-transformation of the hydroxy group (C-OH) to other functional groups such as halogens (e.g., C-Br) before C-C bond formation (Figure 1).

The development of one-step C-C bond formation reactions using alcohols is highly desirable because it realizes the application of ubiquitous materials without the burden of a multiple step procedure.

One way to achieve this goal is to directly convert alcohols to known reactive intermediates that instantly undergo C-C bond formation reactions. We envisioned that we could achieve this using low-valent titanium reagents. Low-valent titanium is a one-electron reductant and a highly oxophilic species.

Because of these features, it is expected that low-valent titanium could extract an oxygen atom from alcohol, cleaving the C-O bond in a one-electron reduction to generate the corresponding carbon radical (C* ). The carbon radical is an extremely reactive intermediate that readily undergoes diverse reactions, including C-C bond formation.

Results
Treatment of 2-naphthalenemethanol with a low-valent titanium reagent afforded a mixture of two C-O cleaved products from hydrogenation and dimerization (Figure 2).

These reactions themselves were not very useful; however, they were both evidence of the generation of benzyl radical species. With this preliminary result, we expected that adding radical-trapping agents would afford the coupling products between the benzyl radical and trapping agents, interrupting the hydrogenation and dimerization reactions. Indeed, the addition of acrylonitrile as a trapping agent gave the coupling product between the benzyl radical and acrylonitrile as the predominant product.

The best result was obtained when the low-valent titanium reagent was prepared from TiCl4(collidine) and manganese powder. This alcohol-based direct C-C bond formation reaction was successfully applied to a series of benzyl alcohol derivatives. Remarkably, both benzyl alcohols with electron-donating and -withdrawing substituents on the aromatic ring were suitable for this reaction.

Furthermore, in addition to primary alcohols, secondary and tertiary alcohols were also suitable despite the considerable increase in steric hinderance.

Several electron-deficient alkenes other than acrylonitrile were also good reactants. With respect to practicality, this reaction is cost-efficient and easy to conduct, at least on a laboratory scale. TiCl4(collidine) is stable during storage, tolerant to brief exposure to air, and costs only approximately 10 JPY/mmol.

Significance and Future Prospects
The significance of this method is that it enables direct use of alcohols as carbon radical equivalents. We have linked ubiquitous alcohols with accumulated knowledge about radical reactions. We believe that this work will prompt research into other alcohol-based radical reactions in the near future.

Research paper


Related Links
Kanazawa University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Laser technique may open door to more efficient clean fuels
Liverpool UK (SPX) Oct 31, 2018
Research by the University of Liverpool could help scientists unlock the full potential of new clean energy technologies. Finding sustainable ways to replace fossil fuels is a key priority for researchers across the globe. Carbon dioxide (CO2) is a hugely abundant waste product that can be converted into energy-rich by-products, such as carbon monoxide. However, this process needs to be made far more efficient for it to work on a global, industrial scale. Electrocatalysts have shown promise ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Atomic path from insulator to metal messier than thought

Bose-Einstein condensate generated in space for the first time

Astroscale secures new funding for LEO debris clean up concept

New composite material that can cool itself down under extreme temperatures

BIO FUEL
ULA contracted by Air Force for Delta IV rocket launch

Navistar contracted by Army for MRAP tech support

Scientists want to blast holes in clouds with laser to boost satellite communication

Military communications satellite online in orbit following launch

BIO FUEL
BIO FUEL
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

BIO FUEL
Indonesia warns over 'fake news' after deadly jet crash

Chinese airlines' profit hit as yuan weakens, fuel costs rise

US indicts 10 Chinese over scheme to steal aerospace tech

BAE to complete Hawk Mk127 upgrades for Australia in 2019

BIO FUEL
US accuses China, Taiwan firms with stealing secrets from chip giant Micron

Tianhe-2 supercomputer works out the criterion for quantum supremacy

Researchers create scalable platform for on-chip quantum emitters

US imposes restrictions on Chinese tech firm

BIO FUEL
Study reveals how soil bacteria are primed to consume greenhouse gas

Japan launches environment monitoring satellite

China, France launch satellite to study climate change

Location of large mystery source of banned ozone depleting substance uncovered

BIO FUEL
Report: European air pollution remains at deadly levels

Newly discovered toxic pollutant found in homes, environment

Air pollution kills 600,000 children each year: WHO

EU air quality slowly improving but still deadly: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.