Space Industry and Business News  
Airborne Dust Causes Ripple Effect on Climate Far Away

Dust from Africa's Saharan Desert lingers in high altitudes as it crosses the Atlantic Ocean. This picture was taken from an aircraft northeast of Barbados in 2006. Cumulus clouds can be seen poking through the tops of the dust layer, which is seen as a milky white haze. Credit: NOAA
by Staff Writers
Greenbelt MD (SPX) Jan 26, 2007
When a small pebble drops into a serene pool of water, it causes a ripple in the water in every direction, even disturbing distant still waters. NASA researchers have found a similar process at work in the atmosphere: tiny particles in the air called aerosols can cause a rippling effect on the climate thousands of miles away from their source region.

The researchers found that dust particles from the desert regions in northern Africa can produce climate changes as far away as the northern Pacific Ocean. Large quantities of dust from North Africa are injected into the atmosphere by dust storms and rising air. Airborne dust absorbs sunlight and heats the atmosphere. The heating effect ripples through the atmosphere, affecting surface and air temperatures as the dust travels.

"These highs and lows in air temperatures caused by radiation-absorbing aerosols can lead to 'teleconnection', which refers to changes in weather and climate in one place caused by events happening far away, often more than half way around the globe," said William Lau, Chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md., and author of a study published last fall in the American Meteorological Society's Journal of Climate. "North African dust can be lifted high into the atmosphere by storms and then transported across the Atlantic and Caribbean, where its effect can be far-reaching."

From a climate point of view, aerosols can block solar radiation (incoming heat and light from the sun) from hitting the Earth's land surface. When sunlight is blocked, it can cause the Earth's surface to cool, and/or the aerosols can absorb solar radiation and cause the atmosphere in the vicinity of the airborne dust to get warmer.

According to Lau, researchers thought for years that heat changes in the atmosphere from aerosols only caused local changes in temperatures. However, "we now know they may cause more than local changes to climate," he said.

Lau's computer model indicates that the heat changes caused by aerosols affect the heat balance in the air over North Africa. That change in heat creates large waves in the atmosphere that ripple as far away as Eurasia and the North Pacific.

Researchers have created complex numerical models to simulate the "still waters" of the atmosphere during North African spring - a season when climate conditions are relatively calm with light winds and light rain.

Lau's team carried out a numerical model experiment that included aerosol forcing, and then another one with identical initial conditions and lower boundary conditions, except that the aerosol forcing is removed.

By comparing the weather patterns in the two experiments, they can deduce the effect of aerosol forcing. They observed the aerosols made an impact far away from their source region. In setting up their experiment, the researchers chose the northern Sahara Desert in springtime, when the weather conditions are relatively calm, allowing aerosols, like dust, to build up more in air.

An "atmospheric teleconnection" happens when unusual patterns of air pressure and air circulation happen in one place, and the energy is dispersed over large distances around the globe to other places. An atmospheric teleconnection can lead to changes in sea level pressure and temperature around the world. This study saw changes from North Africa through Eurasia to the North Pacific.

Most interesting, Lau's team found that North African-dust teleconnection led to strong cooling over the Caspian Sea (a land-locked body of water between Russia and Europe) and warming over central and northeastern Asia, where man-made aerosol concentrations are low.

"Elevated aerosols in large quantities such as dust from North Africa, or biomass burning may have global impacts," said Lau. "We expect to observe more and more real-world examples of this teleconnection phenomenon with the high volume of aerosols generated by nature and human activities around the world." Related Links
Teleconnections information
The Air We Breathe at TerraDaily.com
The Air We Breathe at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Scientists Discover New Species Of Distinctive Cloud-Forest Rodent
Chicago IL (SPX) Jan 26, 2007
A strikingly unusual animal was recently discovered in the cloud-forests of Peru. The large rodent is about the size of a squirrel and looks a bit like one, except its closest relatives are spiny rats. The nocturnal, climbing rodent is beautiful yet strange looking, with long dense fur, a broad blocky head, and thickly furred tail. A blackish crest of fur on the crown, nape and shoulders add to its distinctive appearance.







  • New Damage And Bad Weather Delay Asian Internet Repairs
  • Asia Turns To Time-Tested Solution For Damaged Internet Cables
  • Chinese Web Could Remain Slow Until Late January
  • 10000 Chinese Domain Names Vanish Amid Web Chaos

  • SpaceWorks Engineering Releases Study On Emerging Commercial Transport Services To ISS
  • JOULE II Launches With Success At Poker Flat
  • Russia To Stop Spacecraft Launches From Far East In 2007
  • SpaceX Delays Launch, Faces New Problems With Static Fire Test

  • Bats In Flight Reveal Unexpected Aerodynamics
  • Lockheed Martin And Boeing Form Strategic Alliance To Promote Next-Gen Air Transportation System
  • Time to test the Guardian Missile Defense System For Commercial Aircraft
  • Operational Testing And Evaluation Of Guardian Commercial Airline Anti-Missile System Begins

  • Alcatel Wins Italian Military Communications Satellite Deal
  • Northrop Grumman Integrates All Phased Array Antennas On First Advanced EHF Flight Payload
  • Boeing And US Air Force Demonstrate Advanced Airborne Networking First
  • Raytheon To Be Prime Contractor On Radar Common Data Link Program

  • New Approaches For Producing Large Composite Structures
  • Raytheon Awarded Contract for Early Warning Radars Sustainment
  • Northrop Grumman Supplies TouchTable Technology to CNN's 'The Situation Room'
  • LISA Pathfinder Spacecraft Test Phase About To Start

  • Northrop Grumman Appoints Joseph Ensor Vice President Of Surveillance And Remote Sensing
  • Swedish Space Corporation Appoints New CEO
  • Solar Night Industries Announces Expansion into Colorado
  • Ascent Solar Hires Vice President of Business Development

  • Space Technology Can Help Ailing Agri Sector: Kasturirangan
  • New Sensor To Be A Boon To Astronomers
  • Russia's Putin, India Call For 'Weapons Free' Space
  • GeoEye Next-Generation Earth Imaging Satellite Reaches Major Milestone

  • South Korea's Port Of Busan To Use Savi Networks SaviTrak
  • Russia And India Sign Agreements On Glonass Navigation System
  • Russian Glonass Navigation System Available To India
  • Stolen GPS Lead Police To Thieves

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement