Space Industry and Business News  
TECH SPACE
Actuation gives new dimensions to an old material
by Staff Writers
Pittsburgh PA (SPX) Aug 28, 2018

Researchers at Carnegie Mellon University's Human-Computer Interaction Institute have developed an actuation technology for plain paper, enabling them to create a four-fingered robotic manipulator.

One of the oldest, most versatile and inexpensive of materials - paper - seemingly springs to life, bending, folding or flattening itself, by means of a low-cost actuation technology developed at Carnegie Mellon University's Human-Computer Interaction Institute.

A thin layer of conducting thermoplastic, applied to common paper with an inexpensive 3D printer or even painted by hand, serves as a low-cost, reversible actuator. When an electrical current is applied, the thermoplastic heats and expands, causing the paper to bend or fold; when the current is removed, the paper returns to a pre-determined shape.

"We are reinventing this really old material," said Lining Yao, assistant professor in the HCII and director of the Morphing Matter Lab, who developed the method with her team. "Actuation truly turns paper into another medium, one that has both artistic and practical uses."

Post-doctoral researcher Guanyun Wang, former research intern Tingyu Cheng and other members of Yao's Morphing Matter Lab have designed basic types of actuators, including some based on origami and kirigami forms. These enable the creation of structures that can turn themselves into balls or cylinders. Or, they can be used to construct more elaborate objects, such as a lamp shade that changes its shape and the amount of light it emits, or an artificial mimosa plant with leaf petals that sequentially open when one is touched.

In June, more than 50 students in a workshop at Zhejiang University in Hangzhou, China, used the paper actuation technology to create elaborate pop-up books, including interpretations of famous artworks, such as Van Gogh's Starry Night and Sunflowers.

The printed paper actuator will be exhibited Sept. 6-10 at the Ars Electronica Festival in Linz, Austria; Sept. 13-30 at Bozar Centre for the Fine Arts in Brussels, Belgium; and from October through March at Hyundai Motorstudio in Beijing, China. Yao's group presented the technology in April at CHI 2018, the Conference on Human Factors in Computing Systems, in Montreal.

"Most robots - even those that are made of paper - require an external motor," said Wang, a CMU Manufacturing Futures Initiative fellow. "Ours do not, which creates new opportunities, not just for robotics, but for interactive art, entertainment and home applications."

Creating a paper actuator is a relatively simple process, Cheng said. It employs the least expensive type of 3D printer, a so-called FDM printer that lays down a continuous filament of melted thermoplastic. The researchers use an off-the-shelf printing filament - graphene polyactide composite - that conducts electricity.

The thermoplastic actuator is printed on plain copy paper in a thin layer, just half a millimeter thick. The actuator is then heated in an oven or with a heat gun and the paper is bent or folded into a desired shape and allowed to cool. This will be the default shape of the paper. Electrical leads can then be attached to the actuator; applying electrical current heats the actuator, causing the thermoplastic to expand and thus straighten the paper. When the current is removed, the paper automatically returns to its default shape.

Yao said the researchers are refining this method, changing the printing speed or the width of the line of thermoplastic to achieve different folding or bending effects. They have also developed methods for printing touch sensors, finger sliding sensors and bending angle detectors that can control the paper actuators.

More work remains to be done. Actuation is slow, which Yao and her team hope to address with some material engineering - using papers that are more heat conductive and developing printing filaments that are customized for use in actuators. The same actuation used for paper might also be used for plastics and fabrics.

In addition to Yao, Wang and Cheng, authors of the CHI research paper are Youngwook Do and Byoungkwon An, HCII research affiliates; Jianzhe Gu, a Ph.D. student in HCII; Humphrey Yang, a master's student in the CMU School of Architecture, and Ye Tao, a visiting scholar from Zhejiang University.

More information is available on the project's web page

Research paper


Related Links
Carnegie Mellon University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Specially prepared paper can bend, fold or flatten on command
Pittsburgh PA (SPX) Aug 23, 2018
One of the oldest, most versatile and inexpensive of materials - paper - seemingly springs to life, bending, folding or flattening itself, by means of a low-cost actuation technology developed at Carnegie Mellon University's Human-Computer Interaction Institute. A thin layer of conducting thermoplastic, applied to common paper with an inexpensive 3D printer or even painted by hand, serves as a low-cost, reversible actuator. When an electrical current is applied, the thermoplastic heats and expands ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Specially prepared paper can bend, fold or flatten on command

Crack formation captured in 3D in real time

Researchers turn tracking codes into 'clouds' to authenticate genuine 3-D printed parts

A materials scientist's dream come true

TECH SPACE
Partners in space, partners in signature: an AEHF tradition

Navy Satellite System Receives Green Light for Expanded Operational Use

Lockheed receives contract for advanced satellite communications

Powerful Communications Satellite for US and Allies Shipped for Launch

TECH SPACE
TECH SPACE
Envistacom contracted for DAGRS GPS systems

Nordic nations, North Americans and Antipodeans rank top in navigation skills

UK could develop independent satellite system after leaving EU

China launches new twin BeiDou-3 navigation satellites

TECH SPACE
Swedish fighter jet crashes after bird collision, pilot survives

Chinese plane slides off Manila airport runway in heavy rain

Leonardo to deliver NH90 transport helicopters to Qatar

Boeing receives $217 million for F/A-18 spare parts

TECH SPACE
Helping the microchip industry go with the flow

New material could improve efficiency of computer processing and memory

Researchers achieve multifunctional solid-state quantum memory

Multi-purpose silicon chip created for quantum information processing

TECH SPACE
NASA captures monsoon rains bringing flooding to India

NASA Team Demonstrates "Science on a Shoestring" with Greenhouse Gas-Measuring Instrument

First satellite to measure global winds set for launch

Aeolus in launch tower

TECH SPACE
The Australians putting the brakes on fast fashion, fearing for environment

Flushed contact lenses are big source of microplastic pollution

Tunisia anti-litter activist takes up 300-km, 30-beach challenge

Environmental regulations drove steep declines in US factory pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.