Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
A 'wimpy' dwarf fossil galaxy reveals new facts about early universe
by Staff Writers
Boston MA (SPX) May 02, 2014


The Magellan Telescopes at Las Campanas Observatory, Chile, where some of the new research on the Segue 1 galaxy was conducted. Image courtesy Anna Frebel.

Out on the edge of the universe, 75,000 light years from us, a galaxy known as Segue 1 has some unusual properties: It is the faintest galaxy ever detected. It is very small, containing only about 1,000 stars. And it has a rare chemical composition, with vanishingly small amounts of metallic elements present.

Now a team of scientists, including an MIT astronomer, has analyzed that chemical composition and come away with new insights into the evolution of galaxies in the early stages of our universe - or, in this case, into a striking lack of evolution in Segue 1. Commonly, stars form from gas clouds and then burn up as supernova explosions after about a billion years, spewing more of the elements that are the basis for a new generation of star formation.

Not Segue 1: In contrast to all other galaxies, as the new analysis shows, it appears that Segue 1's process of star formation halted at what would normally be an early stage of a galaxy's development.

"It's chemically quite primitive," says Anna Frebel, an assistant professor of physics at MIT, and the lead author of a new paper detailing the new findings about Segue 1. "This indicates the galaxy never made that many stars in the first place. It is really wimpy. This galaxy tried to become a big galaxy, but it failed."

But precisely because it has stayed in the same state, Segue 1 offers valuable information about the conditions of the universe in its early phases after the Big Bang.

"It tells us how galaxies get started," Frebel says. "It's really adding another dimension to stellar archaeology, where we look back in time to study the era of the first star and first galaxy formation."

Metal-poor stars: a telltale sign
The paper, "Segue 1: An Unevolved Fossil Galaxy from the Early Universe," has just been published by Astrophysical Journal. Along with Frebel, the co-authors of the paper are Joshua D. Simon, an astronomer with the Observatories of the Carnegie Institution, in Pasadena, Calif., and Evan N. Kirby, an astronomer at the University of California at Irvine.

The analysis uses new data taken by the Magellan telescopes in Chile, as well as data from the Keck Observatory in Hawaii, pertaining to six red giant stars in Segue 1, the brightest ones in that galaxy. The astronomers are able to determine which elements are present in the stars because each element has a unique signature that becomes detectable in the telescope data.

In particular, Segue 1 has stars that are distinctively poor in metal content. All of the elements in Segue 1 that are heavier than helium appear to have derived either from just one supernova explosion, or perhaps a few such explosions, which occurred relatively soon after the galaxy's formation. Then Segue 1 effectively shut down, in evolutionary terms, because it lost its gas due to the explosions, and stopped making new stars.

"It just didn't have enough gas, and couldn't collect enough gas to grow bigger and make stars, and as a consequence of that, make more of the heavy elements," Frebel says. Indeed, a run-of-the-mill galaxy will often contain 1 million stars; Segue 1 contains only about 1,000.

The astronomers also found telling evidence in the lack of so-called "neutron-capture elements" - those found in the bottom half of the periodic table, which are created in intermediate-mass stars. But in Segue 1, Frebel notes, "The neutron-capture elements in this galaxy are the lowest levels ever found." This, again, indicates a lack of repeated star formation.

Indeed, Segue 1's static chemical makeup even sets it apart from other small galaxies that astronomers have found and analyzed.

"It is very different than these other regular dwarf-type galaxies that had full chemical evolution," Frebel says. "Those are just mini-galaxies, whereas [Segue 1 is] truncated. It doesn't show much evolution and just sits there."

"We would like to find more"
Dwarf galaxies, astronomical modeling has found, appear to form building blocks for larger galaxies such as the Milky Way. The chemical analysis of Segue 1 sheds new light on the nature of those building blocks, as Frebel notes.

The findings on Segue 1 also indicate that there may be a greater diversity of evolutionary pathways among galaxies in the early universe than had been thought. However, because it is only one example, Frebel is reluctant to make broad assertions.

"We would really need to find more of these systems," she notes. "Or, if we never find another one [like Segue 1], it would tell us how rare it is that galaxies fail in their evolution. We just don't know at this stage because this is the first of its kind."

Frebel's work often focuses on analyzing the chemical composition of unusual stars closer to us. However, she says she would like to continue this kind of analysis for any other galaxies like Segue 1 that astronomers may find. That process could take a while; she acknowledges that any such future discoveries will require "patience, and a little luck."

.


Related Links
Massachusetts Institute of Technology
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Entire Star Cluster Thrown Out of its Galaxy
Cambridge MA (SPX) May 02, 2014
The galaxy known as M87 has a fastball that would be the envy of any baseball pitcher. It has thrown an entire star cluster toward us at more than two million miles per hour. The newly discovered cluster, which astronomers named HVGC-1, is now on a fast journey to nowhere. Its fate: to drift through the void between the galaxies for all time. "Astronomers have found runaway stars before, b ... read more


STELLAR CHEMISTRY
TV terrifies and compels with viruses and robots

Newly Identified 'Universal' Property of Metamagnets May Lead to Everyday Uses

Big data poses great challenges and opportunities for databases

Researchers Develop Harder Ceramic for Armor Windows

STELLAR CHEMISTRY
DISA extends Northrop's work on global command-and-control system

Testing facility paves way for more radio connections to MUOS satellites

DISA Awards Northrop Grumman contract for Joint Command and Control System

AFSPC cuts ribbon for new network operations center

STELLAR CHEMISTRY
Replacing Russian-made rocket engines is not easy

Parallel Ariane 5 and Soyuz mission campaigns keep Arianespace on track

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

ILS Satellite Launches Remain on Schedule Despite Sanctions

STELLAR CHEMISTRY
Glonass Failure Caused by Faulty Software

Homegrown high-precision positioning system put to use

Russia eyes building Glonass stations in 36 countries

Turn your satnav ideas into business

STELLAR CHEMISTRY
Production Configuration AH-6i Light Helicopter for the First Time

U-2 spy plane linked to US air traffic meltdown

NGC Delivers Mode S Upgrade for the UK's Sentry AWACS System

Britain extends BAE Systems support for Tornado fighters

STELLAR CHEMISTRY
New lab-on-a-chip device overcomes miniaturization problems

US chip giant Intel to pump $6 bn into Israel: minister

Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Progress made in developing nanoscale electronics

STELLAR CHEMISTRY
Kazakhstan's First Earth Observation Satellite to Orbit

NASA-CNES Proceed on Surface Water and Ocean Mission

Seeing the bedrock through the trees

EO May Increase Survival Of 'Uncontacted' Tribes

STELLAR CHEMISTRY
UNESCO condemns dredge waste dumping in Barrier Reef waters

US top court upholds cross-state air pollution rule

China toughens environment law to target polluters

The result of slow degradation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.