Space Industry and Business News  
STELLAR CHEMISTRY
A stream of superfluid light
by Staff Writers
Montreal, Canada (SPX) Jun 07, 2017


The flow of polaritons encounters an obstacle in the supersonic (top) and superfluid (bottom) regime. Credit Polytechnique Montreal

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. The "liquid" properties of light emerge under special circumstances, when the photons that form the light wave are able to interact with each other.

Researchers from CNR NANOTEC of Lecce in Italy, in collaboration with Polytechnique Montreal in Canada have shown that for light "dressed" with electrons, an even more dramatic effect occurs. Light become superfluid, showing frictionless flow when flowing across an obstacle and reconnecting behind it without any ripples.

Daniele Sanvitto, leading the experimental research group that observed this phenomenon, states that "Superfluidity is an impressive effect, normally observed only at temperatures close to absolute zero (-273 degrees Celsius), such as in liquid Helium and ultracold atomic gasses. The extraordinary observation in our work is that we have demonstrated that superfluidity can also occur at room-temperature, under ambient conditions, using light-matter particles called polaritons."

"Superfluidity, which allows a fluid in the absence of viscosity to literally leak out of its container", adds Sanvitto, "is linked to the ability of all the particles to condense in a state called a Bose-Einstein condensate, also known as the fifth state of matter, in which particles behave like a single macroscopic wave, oscillating all at the same frequency.

Something similar happens, for example, in superconductors: electrons, in pairs, condense, giving rise to superfluids or super-currents able to conduct electricity without losses."

These experiments have shown that it is possible to obtain superfluidity at room-temperature, whereas until now this property was achievable only at temperatures close to absolute zero. This could allow for its use in future photonic devices.

Stephane Kena-Cohen, the coordinator of the Montreal team, states: "To achieve superfluidity at room temperature, we sandwiched an ultrathin film of organic molecules between two highly reflective mirrors. Light interacts very strongly with the molecules as it bounces back and forth between the mirrors and this allowed us to form the hybrid light-matter fluid.

"In this way, we can combine the properties of photons such as their light effective mass and fast velocity, with strong interactions due to the electrons within the molecules. Under normal conditions, a fluid ripples and whirls around anything that interferes with its flow. In a superfluid, this turbulence is suppressed around obstacles, causing the flow to continue on its way unaltered".

"The fact that such an effect is observed under ambient conditions", says the research team, "can spark an enormous amount of future work, not only to study fundamental phenomena related to Bose-Einstein condensates with table-top experiments, but also to conceive and design future photonic superfluid-based devices where losses are completely suppressed and new unexpected phenomena can be exploited".

"Room-temperature superfluidity in a polariton condensate", G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. De Giorgi, S. A. Maier, G. Gigli, S. Kena-Cohen, D. Sanvitto, (2017) Nature Physics, in press.

STELLAR CHEMISTRY
Device designed to exploit scattering of light by mechanical vibrations
Sao Paulo, Brazil (SPX) Jun 07, 2017
Researchers at the University of Campinas's Gleb Wataghin Physics Institute (IFGW-UNICAMP) in Sao Paulo State, Brazil, have theoretically developed a silicon photonic device that would enable optical and mechanical waves vibrating at tens of gigahertz (GHz) to interact. The proposed device resulted from the projects "Nanophotonics in Group IV and III-V semiconductors" and "Optomechanics in ... read more

Related Links
Polytechnique Montreal
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Bamboo inspires optimal design for lightness and toughness

Model for 2-D materials based RRAM found

New scaling law predicts how wheels drive over sand

Space junk could destroy satellites, hurt economies

STELLAR CHEMISTRY
Airbus further extends channel partner program for military satellite communications in Asia

Radio communications have surprising influence on Earth's near-space environment

Navy receiving data terminal sets from Leonardo DRS

European country orders Harris tactical radios

STELLAR CHEMISTRY
STELLAR CHEMISTRY
GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

Chinese firms develop BeiDou navigation applications

STELLAR CHEMISTRY
Orbital ATK to produce components for B-2 stealth bomber

HH-60W Combat Rescue Helicopter passes design review

Britain's Royal Navy delivers Sea King helicopters to Pakistan

Saab contracted for maintenance of Gripen fighters

STELLAR CHEMISTRY
Wafer-thin magnetic materials developed for future quantum technologies

Controlled creation of quantum emitter arrays

A new spin on electronics

Using graphene to create quantum bits

STELLAR CHEMISTRY
The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

SES-14 integrates NASA ultraviolet space spectrograph

STELLAR CHEMISTRY
Mining for answers on abandoned mines

Scott Pruitt: EPA chief who urged Trump to ditch climate pact

Man-made air pollution in Europe dates back 2,000 years

Taiwan steel plant opens in Vietnam after fish deaths









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.