Space Industry and Business News  
STELLAR CHEMISTRY
A strange new world of light
by Staff Writers
Boston MA (SPX) Nov 06, 2017


Structured light, such as the above corkscrewed beam, can tell scientists a lot about the physics of light and have wide range of applications from super resolution imaging to molecular manipulation and communications.

There's nothing new thing under the sun - except maybe light itself. Over the last decade, applied physicists have developed nanostructured materials that can produce completely new states of light exhibiting strange behavior, such as bending in a spiral, corkscrewing and dividing like a fork.

These so-called structured beams not only can tell scientists a lot about the physics of light, they have a wide range of applications from super-resolution imaging to molecular manipulation and communications.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a tool to generate new, more complex states of light in a completely different way. The research is published in Science.

"We have developed a metasurface which is a new tool to study novel aspects of light," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and senior author of the paper.

"This optical component makes possible much more complex operations and allows researchers to not only explore new states of light but also new applications for structured light."

The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

The new metasurface connects two aspects of light, known as orbital angular momentum and circular polarization (or spin angular momentum). Polarization is direction along which light vibrates. In circularly polarized light, the vibration of light traces a circle. Think about orbital angular momentum and circular polarization like the motion of a planet. Circular polarization is the direction in which a planet rotates on its axis while orbital momentum describes how the planet orbits the sun.

The fact that light can even carry orbital momentum is a relatively recent discovery - only about 25 years old?-- but it's this property of light which produces strange new states, such as beams in the shape of corkscrews.

Previous research has used the polarization of light to control the size and shape of these exotic beams but the connection was limited because only certain polarizations could convert to certain orbital momentums.

This research, however, significantly expands that connection.

"This metasurface gives the most general connection, through a single device, between the orbital momentum and polarization of light that's been achieved so far," said Robert Devlin, co-first author of the paper and former graduate student in the Capasso Lab.

The device can be designed so that any input polarization of light can result in any orbital angular momentum output - meaning any polarization can yield any kind of structured light, from spirals and corkscrews to vortices of any size. And, the multifunctional device can be programmed so that one polarization results in one vortex and a different polarization results in a completely different vortex.

"This is a completely new optical component," said Antonio Ambrosio, Principal Scientist at Harvard Center for Nanoscale Systems (CNS) and co-first author of the paper. "Some metasurfaces are iterations or more efficient, more compact versions of existing optical devices but, this arbitrary spin-to-orbital conversion cannot be done with any other optical device. There is nothing in nature as well that can do this and produce these states of light."

One potential application is in the realm of molecular manipulation and optical tweezers, which use light to move molecules. The orbital momentum of light is strong enough to make microscopic particles rotate and move.

"You can imagine, if we illuminate the device with one polarization of light, it will create a force of a particular kind," said Ambrosio. "Then, if you want to change the force, all you need to do is change the polarization of the incoming light. The force is directly related to the design of the device."

Another application is high-powered imaging. The black hole in the center of the vortex, known as the zero-light intensity region, can image features smaller than the diffraction limit, which is usually half of the wavelength of light. By changing the polarization of light, the size of this center region can be changed to focus different-sized features.

But these beams can also shed light on fundamental questions of physics.

"These particular beams are first and foremost of fundamental scientific interest," said Noah Rubin, co-first author of the paper and graduate student in the Capasso Lab.

"There is interest in these beams in quantum optics and quantum information. On the more applied side, these beams could find application in free-space optical communication, especially in scattering environments where this is usually difficult. Moreover, it has been recently shown that similar elements can be incorporated into lasers, directly producing these novel states of light. This may lead to unforeseen applications."

STELLAR CHEMISTRY
Scientists write 'traps' for light with tiny ink droplets
Cambridge UK (SPX) Oct 26, 2017
A microscopic 'pen' that is able to write structures small enough to trap and harness light using a commercially available printing technique could be used for sensing, biotechnology, lasers, and studying the interaction between light and matter. The printing-based approach, jointly developed by researchers at the University of Cambridge and the Hitachi Cambridge Laboratory, combines high- ... read more

Related Links
Harvard School of Engineering and Applied Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
New property found in unusual crystalline materials

Radio Pollution Creates Space Shield for Satellites

Guiding the random laser

Small droplets are a surprise: They disappear more slowly than they 'should'

STELLAR CHEMISTRY
First order for Elta ELK-1882T SATCOM network system

SES GS Awarded US Government Satellite Solutions Contract

82nd Airborne tests in-flight communication system for paratroopers

16th SPCS Defenders of critical satellite communications

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Airobot supplies positioning technology to single largest container terminal in Europe

Galileo in place for launch: then there were four

Lockheed Martin's first GPS III Satellite receives green light from Air Force

exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

STELLAR CHEMISTRY
Japan donating Beechcraft TC-90 aircraft to Philippines

L3 to provide enhanced MUMT-X capability for Apache helicopters

India clears $3.2 billion purchase of naval choppers

U.S., Australian aircraft to receive electronic warfare upgrades

STELLAR CHEMISTRY
NREL research yields significant thermoelectric performance

How a $10 microchip turns 2-D ultrasound machines to 3-D imaging devices

Deep-depletion: A new concept for MOSFETs

Resistive memory components the computer industry can't resist

STELLAR CHEMISTRY
Wind satellite vacuum packed

Initial Signals Received From Six Small Satellites Built by SSL for Planet

Orbital ATK Successfully Launches Minotaur C Rocket Carrying 10 Spacecraft to Orbit for Planet

Warm Air Helped Make 2017 Ozone Hole Smallest Since 1988

STELLAR CHEMISTRY
Survival of coral reefs depends on pollution cuts: study

Dynamic catalytic converters for clean air in the city

Chile to ban plastic bags in coastal regions

Schools closed over fears of toxic wind from Italy steel plant









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.