Space Industry and Business News
EXO WORLDS
A stormy, active sun may have kickstarted life on Earth
illustration only
A stormy, active sun may have kickstarted life on Earth
by Miles Hatfield for GSFC News
Greenbelt MD (SPX) May 03, 2023

The first building blocks of life on Earth may have formed thanks to eruptions from our Sun, a new study finds.

A series of chemical experiments show how solar particles, colliding with gases in Earth's early atmosphere, can form amino acids and carboxylic acids, the basic building blocks of proteins and organic life. The findings were published in the journal Life.

To understand the origins of life, many scientists try to explain how amino acids, the raw materials from which proteins and all cellular life, were formed. The best-known proposal originated in the late 1800s as scientists speculated that life might have begun in a "warm little pond": A soup of chemicals, energized by lightning, heat, and other energy sources, that could mix together in concentrated amounts to form organic molecules.

In 1953, Stanley Miller of the University of Chicago tried to recreate these primordial conditions in the lab. Miller filled a closed chamber with methane, ammonia, water, and molecular hydrogen - gases thought to be prevalent in Earth's early atmosphere - and repeatedly ignited an electrical spark to simulate lightning. A week later, Miller and his graduate advisor Harold Urey analyzed the chamber's contents and found that 20 different amino acids had formed.

"That was a big revelation," said Vladimir Airapetian, a stellar astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and coauthor of the new paper. "From the basic components of early Earth's atmosphere, you can synthesize these complex organic molecules."

But the last 70 years have complicated this interpretation. Scientists now believe ammonia (NH3) and methane (CH4) were far less abundant; instead, Earth's air was filled with carbon dioxide (CO2) and molecular nitrogen (N2), which require more energy to break down. These gases can still yield amino acids, but in greatly reduced quantities.

Seeking alternative energy sources, some scientists pointed to shockwaves from incoming meteors. Others cited solar ultraviolet radiation. Airapetian, using data from NASA's Kepler mission, pointed to a new idea: energetic particles from our Sun.

Kepler observed far-off stars at different stages in their lifecycle, but its data provides hints about our Sun's past. In 2016, Airapetian published a study suggesting that during Earth's first 100 million years, the Sun was about 30% dimmer. But solar "superflares" - powerful eruptions we only see once every 100 years or so today - would have erupted once every 3-10 days. These superflares launch near-light speed particles that would regularly collide with our atmosphere, kickstarting chemical reactions.

"As soon as I published that paper, the team from the Yokohama National University from Japan contacted me," Airapetian said.

Dr. Kobayashi, a professor of chemistry there, had spent the last 30 years studying prebiotic chemistry. He was trying to understand how galactic cosmic rays - incoming particles from outside our solar system - could have affected early Earth's atmosphere. "Most investigators ignore galactic cosmic rays because they require specialized equipment, like particle accelerators," Kobayashi said. "I was fortunate enough to have access to several of them near our facilities." Minor tweaks to Kobayashi's experimental setup could put Airapetian's ideas to the test.

Airapetian, Kobayashi, and their collaborators created a mixture of gases matching early Earth's atmosphere as we understand it today. They combined carbon dioxide, molecular nitrogen, water, and a variable amount of methane. (The methane proportion in Earth's early atmosphere is uncertain but thought to be low.) They shot the gas mixtures with protons (simulating solar particles) or ignited them with spark discharges (simulating lightning), replicating the Miller-Urey experiment for comparison.

As long as the methane proportion was over 0.5%, the mixtures shot by protons (solar particles) produced detectable amounts of amino acids and carboxylic acids. But the spark discharges (lightning) required about a 15% methane concentration before any amino acids formed at all.

"And even at 15% methane, the production rate of the amino acids by lightning is a million times less than by protons," Airapetian added. Protons also tended to produce more carboxylic acids (a precursor of amino acids) than those ignited by spark discharges.

All else being equal, solar particles appear to be a more efficient energy source than lightning. But all else likely wasn't equal, Airapetian suggested. Miller and Urey assumed that lightning was just as common at the time of the "warm little pond" as it is today. But lightning, which comes from thunderclouds formed by rising warm air, would have been rarer under a 30% dimmer Sun.

"During cold conditions you never have lightning, and early Earth was under a pretty faint Sun," Airapetian said. "That's not saying that it couldn't have come from lightning, but lightning seems less likely now, and solar particles seems more likely."

These experiments suggest our active young Sun could have catalyzed the precursors of life more easily, and perhaps earlier, than previously assumed.

Related Links
Astrobiology at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Searching for life with space dust
Tokyo, Japan (SPX) Mar 23, 2023
Following enormous collisions, such as asteroid impacts, some amount of material from an impacted world may be ejected into space. This material can travel vast distances and for extremely long periods of time. In theory this material could contain direct or indirect signs of life from the host world, such as fossils of microorganisms. And this material could be detectable by humans in the near future, or even now. When you hear the words vacuum and dust in a sentence, you may groan at the thought ... read more

EXO WORLDS
Hong Kong's bamboo scaffolders preserve ancient technique

North American Helium brings 6th facility online

Speedy composite manufacturing

Innovative NASA alloy used for 3D printed rocket

EXO WORLDS
Raytheon Technologies develops 'NexGen Optix' Tactical Free-Space Optical Comms

Eglin squadron launches support for Link 16 from space

European consortium signs partnership agreement to bid for IRIS2 Constellation

Hughes introduces Smart Network Edge Software for critical DoD communications

EXO WORLDS
EXO WORLDS
China to launch up to 3 BeiDou backup satellites in 2023

Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

EXO WORLDS
Airlines, unions in rare unity on US pilot diversity drive

Around the world in 10 Days

Boeing reports another loss in Q1, but confirms forecast

In air dominance, the past and future converge

EXO WORLDS
A touch-responsive fabric armband for flexible keyboards, wearable sketchpads

Europe must boost chip production amid Asia risks: EU chief

Lithography-free photonic chip offers speed and accuracy for artificial intelligence

MIT engineers "grow" atomically thin transistors on top of computer chips

EXO WORLDS
Spire Global launches a space-powered weather insights platform for the maritime industry

Imagia raises new funding for optoelectronics research

Satellites help guard ecological red lines

A more precise model of the Earth's ionosphere

EXO WORLDS
Thailand chokes on pollution but greens struggle to be heard in election

Brazil Indigenous leader awarded for fight against mining

Air pollution kills 1,200 children a year across Eruope

Arctic ice algae heavily contaminated with microplastics

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.