Subscribe free to our newsletters via your
. Space Industry and Business News .




CARBON WORLDS
A small connection with big implications: Wiring up carbon-based electronics
by Staff Writers
Basque County, Spain (SPX) May 06, 2014


Artistic view of an electric connection between a carbon-based "football" molecule and a single metallic atom (gray ball). The researchers were able to quantify how the current depends on the chemical nature of the contacting atom.

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered in the nanoscale, that is, in the dimension of a millionth of millimetre, are promising candidates to envision applications in nanoscale devices, ranging from energy conversion to nano-electronic transistors.

A good connection between carbon-based materials and external metallic leads is of major importance in nanodevice performance, an aspect where an important step has been surmounted by researchers from UPV/EHU, DIPC and CNRS by studying contacts of carbon nanostructures with atoms of different chemical nature.

The chemical nature of contacting leads is of major importance as it affects the electronic properties and the geometry of the contact. The impact of these two aspects on the transport properties are entangled and this group studied these two parameters for contacts shrunk to the limit of individual atoms as for large structures it is challenging to address them separately.

In close collaboration, the researchers used a prototype carbon-based molecule made of 60 carbon atoms arranged in a sphere that can be viewed as a graphene sheet rolled into a tiny ball. The experimental team in Strasbourg led by Guillaume Schull, attached this molecule to the apex of an extremely tiny metal needle of a scanning tunnelling microscope.

The molecule-terminated needle was then cautiously approached to individual metallic atoms of different chemical nature up to the formation of a robust connection. By simultaneously measuring the electrical current passing through these connections, they could deduce which of the individual metallic atom is injecting charges to the carbon-made molecule with the greatest efficiency.

Large-scale computer simulations performed by the theoretical team in San Sebastian led by Thomas Frederiksen, Ikerbasque Research Professor at the DIPC, revealed a fascinating and unexpected aspect of these extremely tiny connections: their electric and mechanical properties are in fact representative for much larger carbon-based materials.

These results, published in the prestigious journal Nature Communications, set the bases to find extremely efficient contacts in the near future. The study paves the way to probe a great number of different metallic species (as well as tiny alloys made of two or three different metallic atoms), allowing for a systematic classification of their abilities to inject electrons into emerging carbon-based electronic devices.

Chemical control of electrical contact to sp2 carbon atoms T. Frederiksen, G. Foti, F. Scheurer, V. Speisser, and G. Schul. Nature Communications (2014). DOI: 10.1038/ncomms4659

.


Related Links
University of the Basque Country
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene Not All Good
Riverside CA (SPX) May 01, 2014
In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore likely to cause negative environmental impacts if released. Graphene oxide nanoparticles are an oxidized fo ... read more


CARBON WORLDS
US data capital poised to advance leadership position in big data

Saab adds new radar variants

Appeal court revives Oracle-Google copyright battle

High-Strengh Materials from the Pressure Cooker

CARBON WORLDS
Production Ramps Up on next Advanced EHF Birds

A Multi-Billion Dollar Military Satellite Market

Sagetech to Study Micro-Mode 5 Transponder for US Navy

China to deter unauthorized use of radio frequency

CARBON WORLDS
Preliminary Injunction Lifted - ULA Purchase of RD-180 Engines Complies with Sanctions

Replacing Russian-made rocket engines is not easy

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

Pre-launch processing begins for the O3b Networks satellites

CARBON WORLDS
Next Galileo satellites arrive at Europe's Spaceport

Inmarsat offers global airline tracking service after MH370

NASA Uses GPS to Find Sierra Water Weight

China's Beidou navigation system makes breakthrough

CARBON WORLDS
Staying On Task in the Automated Cockpit

First Iraqi F-16 Completes First Flight

April Marks New F-35 Flying Records

BAE touts component production for F-35

CARBON WORLDS
A Lab in Your Pocket

Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

New lab-on-a-chip device overcomes miniaturization problems

US chip giant Intel to pump $6 bn into Israel: minister

CARBON WORLDS
Experts demonstrate versatility of Sentinel-1

Swarm's precise sense of magnetism

Kazakhstan's First Earth Observation Satellite to Orbit

How Does Your Garden Glow? NASA's OCO-2 Seeks Answer

CARBON WORLDS
Study lists dangerous chemicals linked to breast cancer

Study strengthens link between neonicotinoids and collapse of honey bee colonies

Nanocellulose sponges to combat oil pollution

Improving air quality in NYC would boost children's future earnings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.