Space Industry and Business News
TIME AND SPACE
A sharper look at the first image of a black hole
A team of researchers, including an astronomer with NSF�s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth.
A sharper look at the first image of a black hole
by Staff Writers
Washington DC (SPX) Apr 18, 2023

A team of researchers, including an astronomer with NSF's NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth.

The iconic image of the supermassive black hole at the center of Messier 87 has received its first official makeover, thanks to a new machine-learning technique known as PRIMO. This new image better illustrates the full extent of the object's dark central region and the surprisingly narrow outer ring. To achieve this result, a team of researchers used the original 2017 data obtained by the Event Horizon Telescope (EHT) collaboration and created a new image that, for the first time, represents the full resolution of the EHT. [1]

PRIMO, which stands for principal-component interferometric modeling, was developed by EHT members Lia Medeiros (Institute for Advanced Study), Dimitrios Psaltis (Georgia Tech), Tod Lauer (NSF's NOIRLab), and Feryal Ozel (Georgia Tech). A paper describing their work is published in The Astrophysical Journal Letters.

In 2017 the EHT collaboration used a network of seven radio telescopes at different locations around the world to form an Earth-sized virtual telescope with the power and resolution capable of observing the "shadow" of a black hole's event horizon. [2] Though this technique allowed astronomers to see remarkably fine details, it lacked the collecting power of an actual Earth-sized telescope, leaving gaps in the data. The researchers' new machine-learning technique helped fill in those gaps.

"With our new machine-learning technique, PRIMO, we were able to achieve the maximum resolution of the current array," says lead author Lia Medeiros. "Since we cannot study black holes up close, the detail in an image plays a critical role in our ability to understand its behavior. The width of the ring in the image is now smaller by about a factor of two, which will be a powerful constraint for our theoretical models and tests of gravity."

PRIMO relies on a branch of machine learning known as dictionary learning, which teaches computers certain rules by exposing them to thousands of examples. The power of this type of machine learning has been demonstrated in numerous ways, from creating Renaissance-style works of art to completing the unfinished work of Beethoven.

Applying PRIMO to the EHT image of Messier 87, computers analyzed over 30,000 high-fidelity simulated images of gas accreting onto a black hole to look for common patterns in the images. The results were then blended to provide a highly accurate representation of the EHT observations, simultaneously providing a high-fidelity estimate of the missing structure of the image. A paper pertaining to the algorithm itself was published previously in The Astrophysical Journal on 3 February 2023.

"PRIMO is a new approach to the difficult task of constructing images from EHT observations," said Lauer. "It provides a way to compensate for the missing information about the object being observed, which is required to generate the image that would have been seen using a single gigantic radio telescope the size of the Earth."

The team confirmed that the newly rendered image is consistent with the EHT data and with theoretical expectations, including the bright ring of emission expected to be produced by hot gas falling into the black hole.

The new image should lead to more accurate determinations of the mass of the Messier 87 black hole and the physical parameters that determine its present appearance. The data also provide an opportunity for researchers to place greater constraints on alternatives to the event horizon (based on the darker central brightness depression) and perform more robust tests of gravity (based on the narrower ring size). PRIMO can also be applied to additional EHT observations, including those of Sagittarius A*, the central black hole in our own Milky Way Galaxy.

"The 2019 image was just the beginning," said Medeiros. "If a picture is worth a thousand words, the data underlying that image have many more stories to tell. PRIMO will continue to be a critical tool in extracting such insights."

Research Report:"The Image of the M87 Black Hole Reconstructed with PRIMO."

Related Links
NOIRLab
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Hubble sees possible runaway black hole creating a trail of stars
New Haven CT (SPX) Apr 07, 2023
There's an invisible monster on the loose, barreling through intergalactic space so fast that if it were in our solar system, it could travel from Earth to the Moon in 14 minutes. This supermassive black hole, weighing as much as 20 million Suns, has left behind a never-before-seen 200,000-light-year-long "contrail" of newborn stars, twice the diameter of our Milky Way galaxy. It's likely the result of a rare, bizarre game of galactic billiards among three massive black holes. Rather than gobbling ... read more

TIME AND SPACE
NASA satellite's elusive green lasers spotted at work

General Atomics completes commissioning of space environmental testing chambers

SwRI joins new NASA institute to qualify, certify additive manufacturing methods

Viasat real-time Earth antennas integrated on Microsoft Azure Orbital

TIME AND SPACE
Building a Secure Resilient Satellite Infrastructure for Europe

Raytheon and SpiderOak collaborate to secure satcoms in crowded LEO

AFRL conducts first flight experiments for communications in terahertz band

Spire Global awarded National Reconnaissance Office contract for radio frequency data

TIME AND SPACE
TIME AND SPACE
Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

Topcon further expands MC-X Platform with all-new GNSS Option

TIME AND SPACE
X-59 gets its tail in Quesst for super quiet super fast planes

UK aviation warns green shift to slow demand growth

UK slams Etihad Airways ads over green claims

F-16 electronic warfare suite counters RF threats during USAF testing

TIME AND SPACE
Facile synthesis of high-performance perovskite oxides for acid-base catalysis

Diamond sensors for neutron experiment and quantum information science

Efficient heat dissipation perovskite lasers using a diamond substrate

EU agrees plan to boost chip production

TIME AND SPACE
Metaspectral to bring SkyFi satellite imagery to its Fusion Platform

China launches new meteorological satellite

China's latest EO satellite offers high-precision rainfall monitoring

L3Harris to build geostationary weather satellite sensors for Japan

TIME AND SPACE
Coastal shellfish 'colonise' ocean plastic: study

Can music festivals actually go green?

G7 members commit to ending new plastic pollution by 2040

The hidden culprit behind nitrogen dioxide emissions

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.