![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Ken Kingery for Duke News Durham NC (SPX) Jan 03, 2018
Researchers at Duke University have discovered a way to enhance the effectiveness and safety of sonogenetics or ultrasonic modulation, emerging techniques that use sound waves to control the behavior of individual neurons or to promote tissue growth and wound healing in other cells. Ultrasonic therapy often uses targeted ultrasound waves to create cavitation bubbles - tiny balloons of rapidly oscillating air pockets that stretch nearby cell membranes when they burst. This stretching can activate calcium ion channels, causing a neuron to fire, or can signal the body's repair mechanisms to crank into overdrive. If a bubble is too big or too close, however, the technique can damage or destroy nearby cells. While this may be the desired result in applications such as cancer therapy, researchers of sonogenetics typically want to avoid damage. In a new study, biomedical engineers found that by attaching microscopic beads to receptors on the cell's surface, they can produce the technique's cell-stretching, calcium-releasing effects much more safely. The results appeared online the week of December 25, 2017 in the Proceedings of the National Academy of Science. "To get ion channels and pores in a cell's membrane to open, you typically have to stretch it very strong and very fast," said Pei Zhong, the Anderson-Rupp Professor of Mechanical Engineering and Materials Science at Duke. "But we discovered that attaching microbeads to the cell's surface amplifies the cell's response during cavitation and produces the same result with much less risk of cellular injury." Produced when a force creates a void in liquid, cavitation bubbles can be powerful enough to cause severe damage to ship propellers. While the cavitation bubbles created during medical procedures are not nearly that strong, they can still cause a lot of damage. And because of their speed and randomness, it is very difficult to study their effects on nearby cells. The new study is the first to use an experimental platform that Zhong's team built in 2015 to study sonoporation that reliably produces tandem cavitation bubbles in exactly the same spot every time. By placing different types of cells at various distances from the bubbles, researchers can begin to explore the details of how cells respond. For the first follow-up study to use the platform, Zhong chose to look at calcium signaling. "Calcium signaling regulates many important cellular functions, like muscle contraction, neural communication, gene transcription and tissue growth," said Fenfang Li, a postdoctoral research fellow in Zhong's laboratory and lead author of the study. "Previous studies have shown that sonogenetics and sonoporation causes a calcium response, which can make neurons fire or promote healing in other cells, so we wanted to take a closer look." The results showed that cavitation bubbles actually produce two types of calcium responses: slow waves and fast waves. But most interestingly, the study showed that microbeads attached to the cell's surface can catch some of the bubbles' energy so they tug at the membrane's surface. This provides more localized deformation - and a stronger calcium response - from a slower, softer wave. "This strategy can stimulate the cells at a safe distance from the cavitation bubbles," said Zhong. "The approach should make it much easier for researchers to safely use sonogenetics in human therapies." "Dynamics and Mechanisms of Intracellular Calcium Waves Elicited by Tandem Bubble-Induced Jetting Flow." Fenfang Li, Chen Yang, Fang Yuan, Defei Liao, Thomas Li, Farshid Guilak, and Pei Zhong. PNAS, 2017. DOI: 10.1073/pnas.1713905115
![]() Xuzhou, China (AFP) Nov 9, 2017 Workers wielding screeching hand-held wood sanders toil overtime in Cheng Huaibao's bunk bed factory, rushing to prepare for the wave of orders about to break on manufacturing businesses like his across China. China's November 11 orgy of e-shopping strikes Saturday, with hundreds of millions of consumers expected to seize on promotional discounts to place up to a billion pent-up orders for e ... read more Related Links Duke University Hospital and Medical News at InternDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |