![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Copenhagen, Denmark (SPX) Jun 10, 2022
Researchers at the Niels Bohr Institute, University of Copenhagen, have improved the coherence time of a previously developed quantum membrane dramatically. The improvement will expand the usability of the membrane for a variety of different purposes. With a coherence time of one hundred milliseconds, the membrane can for example store sensitive quantum information for further processing in a quantum computer or network. The result has now been published in Nature Portfolio.
The quantum drum is now connected to a read-out unit As a first step, the team of researchers has combined the membrane with a superconducting microwave circuit, which enables precise readouts from the membrane. That is, it has become "plugged in", as required for virtually any application. With this development, the membrane can be connected to various other devices that process or transmit quantum information.
Cooling the quantum drum system to reach quantum ground state Since the temperature of the environment determines the level of random forces disturbing the membrane, it is imperative to reach a sufficiently low temperature to prevent the quantum state of motion from being washed out. The researchers achieve this by means of a helium-based refrigerator. With the help of the microwave circuit, they can then control the quantum state of the membrane motion. In their recent work, the researchers could prepare the membrane in the quantum ground state, meaning that its motion is dominated by quantum fluctuations. The quantum ground state corresponds to an effective temperature of 0,00005 degrees above the absolute zero, which is -273.15 C.
Applications for the plugged in quantum membrane are many One could use a slightly modified version of this system that can feel forces from both microwave and optical signals to build a quantum transducer from microwave to optics. Quantum information can be transported at room temperature in optical fibers on kilometers without perturbations. On the other hand, the information is typically processed inside a cooling unit, capable of reaching sufficiently low temperatures for superconducting circuits like the membrane to operate. Connecting these two systems - superconducting circuits to optical fibers - could therefore enable the construction of a quantum internet: several quantum computers linked together with optical fibers. No computers have infinite space, so the possibility of distributing computational capabilities to connected quantum computers, would greatly enhance the capacity to solve complicated problems.
Gravity - not well understood in quantum mechanics, but crucial - can now be explored The role of gravity in the quantum regime is a yet unanswered, fundamental question in physics. This is yet another place where the high coherence time of the membranes demonstrated here may be applied for study. One hypothesis in this area is that gravity has the potential to destroy some quantum states with time. With a device as big as the membrane, such hypotheses may be tested in the future.
![]() ![]() Thermal insulation for quantum technologies Berlin, Germany (SPX) May 20, 2022 Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from the outside world, as many quantum effects are only stable at low temperatures. What is needed are materials with extremely low thermal conductivity that are also compatible with the materials used in quantum technology. A team led by Dr Klaus Habicht from HZB has now taken a big step forward in t ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |