Space Industry and Business News  
CARBON WORLDS
A plethora of states in magic-angle graphene
by Staff Writers
Barcelona, Spain (SPX) Oct 31, 2019

Close-up of the device placed onto the piece that later is adjusted to the experimental setup.

Last year, graphene made another major splash in the A plethora of states in magic-angle graphenes when scientists discovered that by simply rotating two layers of this material one on top of the other, it could behave like a superconductor where electrical currents can flow without resistance. This new phase of matter was seen to appear only when the two graphene layers were twisted between each other at an angle of 1.1 degrees (no more and no less) - the so-called magic angle, and was always accompanied by enigmatic correlated insulator phases, similar to what is observed in mysterious cuprate high-temperature superconductors.

Now, researchers from ICFO in Barcelona have succeeded in vastly improving the device quality of this setup, and in doing so, have stumbled upon something even bigger and totally unexpected. They were able to observe a zoo of previously unobserved superconducting and correlated states, in addition to an entirely new set of magnetic and topological states, opening a completely new realm of richer physics.

Room temperature superconductivity is the key to many technological goals such as efficient power transmission, frictionless trains, or even quantum computers, among others. When discovered more than 100 years ago, superconductivity was only plausible in materials cooled down to temperatures close to absolute zero. Then, in the late 80's, scientists discovered high temperature superconductors by using ceramic materials called cuprates.

In spite of the difficulty of building superconductors and the need to apply extreme conditions (very strong magnetic fields) to study the material, the field took off as something of a holy grail among scientists based on this advance. Since last year, the excitement around this field has increased. The double mono-layers of carbon have captivated researchers because, in contrast to cuprates, their structural simplicity has become an excellent platform to explore the complex physics of superconductivity.

The new study recently published in Nature was carried out by ICFO researchers Xiaobo Lu, Petr Stepanov, Mohammed Ali Aamir, Ipsita Das, led by ICFO Prof. Dmitri Efetov, with support from ICFO Prof. Adrian Bachtold's research lab, and in collaboration with an interdisciplinary group from UT Austin, the Chinese Academy of Sciences, and the National Institute of Materials Science of Japan.

In their experiment, using a "tear and stack" van der Waals assembly technique, the scientists at ICFO were able to engineer two stacked monolayers of graphene, rotated by only 1.1 degrees - the magic angle. They then used a mechanical cleaning process to squeeze out impurities and to release local strain between the layers. In doing this, they were able to obtain extremely clean twisted graphene bilayers with reduced disorder, resolving a multitude of fragile interaction effects.

By changing the electrical charge carrier density within the device with a nearby capacitor, they then saw that the material could be tuned from behaving as an insulator, to behaving as a superconductor, or even an exotic orbital magnet with non-trivial topological texture - a phase never observed before. What is even more astounding is the fact that the device entered a superconducting state at the lowest carrier densities ever reported for any superconductor, a completely new breakthrough in the field.

Xiaobo Lu, first author of the study, thrilled with the results, says "To our surprise, we observed that the system seemed to be competing between many novel states. By tuning the carrier density within the lowest two flat moire bands, the system showed correlated states and superconductivity alternately, together with exotic magnetism and band topology. We also noted that these states were very sensitive to the quality of the device, i.e. accuracy and homogeneity of the twist angle between two sheets of graphene layers."

Last but not least, in this experiment, the researchers were also able to increase the superconducting transition temperature to above 3 kelvin, reaching record values which are twice as high as previously reported studies for magic-angle-graphene devices.

As ICFO Prof. Dmitri Efetov comments, "we never expected to see so many different states by just tuning the electronic gate. This was totally unexpected. For the first time we are able to delve into the microscopic world and manipulate the systems to see what happens in order to start understanding and finding models that can explain it."

What is exceptional about this approach is that graphene, a material that is typically poor on strongly interacting electron phenomena, now has been the enabling tool providing access to this complex and exceptionally rich physics. So far, there is no theory that can explain the superconductivity in magic angle graphene at the microscopic level, however with this new discovery, it is clear that a new chance to unveil its origin has emerged.

Research paper


Related Links
ICFO-The Institute of Photonic Sciences
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Imperfect diamonds paved road to historic Deep Earth discoveries
Washington DC (SPX) Oct 25, 2019
Thousands of diamonds, formed hundreds of kilometers deep inside the planet, paved the road to some of the 10-year Deep Carbon Observatory program's most historic accomplishments and discoveries, being celebrated Oct. 24-26 at the US National Academy of Sciences. Unsightly black, red, green, and brown specks of minerals, and microscopic pockets of fluid and gas encapsulated by diamonds as they form in Deep Earth, record the elemental surroundings and reactions taking place within Earth at a specif ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Drexel researchers develop coal ash aggregate that helps concrete cure

Magnets sustainably separate mixtures of rare earth metals

NASA taps telecommunications technology to develop more capable, miniaturized spectrometer

Space collisions a growing concern as Earth orbit gets more crowded

CARBON WORLDS
EPS completes multiservice operational test, declared fully operational

China launches new communication technology experiment satellite

2nd Space Operations Squadron decommissions 22-year-old satellite

Next-gen satellite communications system ready for use, U.S. Navy says

CARBON WORLDS
CARBON WORLDS
ISRO works with Qualcomm to develop improved geo-location chipset

Satelles, Inc. Secures $26 Million in Series C Funding Round Led by C5 Capital

Highly accurate GPS is possible thanks to NASA

Northrop Grumman awarded $1.39B for new Air Force navigation system

CARBON WORLDS
Rome's Fiumicino airport expansion rejected for environmental reasons

U.S. Air Force issues RFP for light attack aircraft for partner, ally support

eFlyer developmental prototype flight tests confirm benefits of electric propulsion

F-22 deployment to Saudi Arabia confirmed in Air Force video

CARBON WORLDS
Blanket of light may give better quantum computers

Radiation detector with the lowest noise in the world boosts quantum work

Study reveals how age affects perception of white LED light

Researchers develop tiny infrared spectrometer

CARBON WORLDS
DLR DESIS spectrometer begins routine operations on the ISS

Ozone hole in 2019 is the smallest on record since its discovery

Tiny particles lead to brighter clouds in the tropics

Joint Polar Satellite System's Microwave Instrument Fully Assembled

CARBON WORLDS
Papua New Guinea shutters polluting Chinese plant

Boom or bust: Hanoi pollution crises expose growth risks

Day after protests, Lebanese don gloves and clean up

Greece fights for its beaches and gets tough on plastic pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.