Space Industry and Business News  
SOLAR DAILY
A new way to measure solar panel degradation
by Staff Writers
Washington DC (SPX) Jan 11, 2019

file image only

Despite many benefits and relative popularity as a renewable energy source, eventually, the sun does set on even the best solar panels. Over time, solar cells face damage from weather, temperature changes, soiling, and UV exposure. Solar cells also require inspections to maintain cell performance levels and reduce economic losses.

So, how does one inspect panels in real time, in a way that is both cost-effective and time-efficient? Parveen Bhola, a research scholar at India's Thapar Institute of Engineering and Technology, and Saurabh Bhardwaj, an associate professor at the same institution, spent the last few years developing and improving statistical and machine learning-based alternatives to enable real-time inspection of solar panels.

Their research found a new application for clustering-based computation, which uses past meteorological data to compute performance ratios and degradation rates. This method also allows for off-site inspection.

Clustering-based computation is advantageous for this problem because of its ability to speed up the inspection process, preventing further damage and hastening repairs, by using a performance ratio based on meteorological parameters that include temperature, pressure, wind speed, humidity, sunshine hours, solar power, and even the day of the year. The parameters are easily acquired and assessed, and can be measured from remote locations.

Improving PV cell inspection systems could help inspectors troubleshoot more efficiently and potentially forecast and control for future difficulties. Clustering-based computation is likely to shed light on new ways to manage solar energy systems, optimizing PV yields, and inspiring future technological advancements in the field.

"The majority of the techniques available calculate the degradation of PV (photovoltaic) systems by physical inspection on site. This process is time-consuming, costly, and cannot be used for the real-time analysis of degradation," Bhola said. "The proposed model estimates the degradation in terms of performance ratio in real time."

Bhola and Bhardwaj worked together before and developed the model to estimate solar radiation using a combination of the Hidden Markov Model and the Generalized Fuzzy Model.

The Hidden Markov Model is used to model randomly changing systems with unobserved, or hidden states; the Generalized Fuzzy Model attempts to use imprecise information in its modeling process. These models involve recognition, classification, clustering, and information retrieval, and are useful for adapting PV system inspection methods.

The benefits of real-time PV inspection go beyond time-sensitive and cost-efficient measures. This new, proposed method can also improve current solar power forecasting models. Bhola noted that the output power of a solar panel, or set of solar panels, could be forecasted with even greater accuracy. Real-time estimation and inspection also allows for real-time rapid response.

"As a result of real-time estimation, the preventative action can be taken instantly if the output is not per the expected value," Bhola said. "This information is helpful to fine-tune the solar power forecasting models. So, the output power can be forecasted with increased accuracy."

Research Report: "Clustering-based computation of degradation rate for photovoltaic systems"


Related Links
American Institute of Physics
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
NREL details great potential for floating PV systems
Golden CO (SPX) Jan 09, 2019
National Renewable Energy Laboratory (NREL) researchers estimate that installing floating solar photovoltaics on the more than 24,000 man-made U.S. reservoirs could generate about 10 percent of the nation's annual electricity production. Their findings, published in the journal Environmental Science and Technology, reveal for the first time the potential for floating PV to produce electricity in the United States. While the United States was the first to demonstrate floating PV panels - with ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
New technique offers rapid assessment of radiation exposure

A high-performance material at extremely low temperatures

Chemical catalysts turn tiny 2D sheets into 3D objects

Raytheon contracts Elbit Systems for Two Color Laser System

SOLAR DAILY
Hughes India and Sterlite Tech enable Satcom connectivity for Indian navy

DARPA awards 6 teams during final Spectrum Collaboration Challenge Qualifier

Military Santa tracker live despite US government shutdown

Satellite study proves global quantum communication will be possible

SOLAR DAILY
SOLAR DAILY
China's BeiDou officially goes global

First GPS III satellite launched, moving toward operational orbit

First Lockheed Martin-built GPS 3 satellite responding to commands

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

SOLAR DAILY
Israeli F-15 lands safely after losing canopy at 30,000 feet

Pinnacle Systems tapped by Air Force for KC-10 training systems

A first class gaffe: Cathay to honour cheap ticket error

Raytheon tapped for configuration work on Super Hornets, Growlers

SOLAR DAILY
Machine learning and quantum mechanics team up to understand water at the atomic level

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture

Excitons pave the way to more efficient electronics

Quantum chemistry on quantum computers

SOLAR DAILY
Declining particulate pollution led to increased ozone pollution in China

China launches six Yunhai-2 satellites for atmospheric environment research

Reliable tropical weather pattern to change in a warming climate

Research reveals 'fundamental finding' about Earth's outer core

SOLAR DAILY
Safer mining practices reduce hazardous exposures in small-scale mining in Nigeria

NUS study finds that severe air pollution affects the productivity of workers

Plant hedges help curb roadside pollution

Microplastics and plastic additives discovered in ascidians all along Israel's coastline









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.