Space Industry and Business News  
PHYSICS NEWS
A new type of gravitational wave detector to find tennis ballsized black holes
by Staff Writers
Brussels, Belgium (SPX) Jun 23, 2021

stock illustration only

"Detecting primordial black holes opens up new perspectives to understand the origin of the Universe, because these still hypothetical black holes are supposed to have formed just a few tiny fractions of a second after the Big Bang. Their study is of great interest for research in theoretical physics and cosmology, because they could notably explain the origin of dark matter in the Universe".

You can see stars in the eyes of the members of the team led by Professor Fuzfa, astrophysicist at UNamur, when talking about the perspectives of their research. This project is the result of an unprecedented collaboration between the UNamur and ULB, to which the ENS added thanks to the involvement of trainee student Leonard Lehoucq.

The idea was to combine the UNamur expertise in the field of gravitational wave antennas, an idea patented by Professor F?zfa in 2018 and studied by Nicolas Herman as part of his doctorate, with that of ULB in the booming field of primordial black holes, in which Professor Clesse is one of the central players.

They have just developed an application of this type of detector in order to observe "small" primordial black holes. Their results have just been published in the journal Physical Review D. "To this day, these primordial black holes are still hypothetical, because it is difficult to make the difference between a black hole resulting from the implosion of a star core and a primordial black hole.

Being able to observe smaller black holes, the mass of a planet but a few centimeters in size, would make the difference," the team of researchers says. They carry on: "We are offering experimenters a device that could detect them, by capturing the gravitational waves they emit when merging and which are of much higher frequencies than those currently available".

But what is the technique? A gravitational wave "antenna", composed of a specific metal cavity and suitably immersed in a strong external magnetic field. When the gravitational wave goes through the magnetic field, it generates electromagnetic waves in the cavity. In a way, the gravitational wave makes the cavity "hiss" (resonate), not with sound but with microwaves.

This type of device, just a few meters in size, would be enough to detect fusions of primordial small black holes millions of light years from Earth. It is much more compact than the commonly used detectors (LIGO, Virgo and KAGRA interferometers) which are several kilometers long. The detection method makes it sensitive to very high frequency gravitational waves (in the order of 100 MHz, compared to 10-1000 Hz for LIGO / Virgo / Kagra), which are not produced by ordinary astrophysical sources such as fusions, neutron stars or stellar black holes.

On the other hand, it is ideal for the detection of small black holes, the mass of a planet and its size goes from a small ball to a tennis ball. "Our detector proposal combines well mastered and everyday life technologies such as magnetrons in microwave ovens, MRI magnets and radio antennas. But don't take your household appliances apart right away to start the adventure: read our article first, then order your equipment, understand the device and the signal that awaits you at the output," the researchers say laughingly.

This patented technique is currently at the stage of advanced theoretical modeling, but has all the necessary elements to enter a more concrete phase, with the construction of a prototype. In any case, it paves the way for fundamental research into the origins of our Universe. In addition to primordial black holes, this type of detector could also directly observe the gravitational waves emitted at the time of the Big Bang, and thus probe physics at much higher energies than the ones achieved in particle accelerators.

Research paper


Related Links
Universite libre de Bruxelles
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


PHYSICS NEWS
Scientists find new insights into the elusive continuous waves from spinning neutron stars
Melbourne, Australia (SPX) May 28, 2021
Five years on from the first discovery of gravitational waves, an international team of scientists, including from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), are continuing the hunt for new discoveries and insights into the Universe. Using the super-sensitive, kilometre-sized LIGO detectors in the United States, and the Virgo detector in Europe, the team have witnessed the explosive collisions of black holes and neutron stars. Recent studies, however, have been looking for s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Northrop Grumman flight tests Digital Wideband AESA Sensor

US Navy tests warship's metal with megablast

Compact quantum computer for server centers

Meringue-like material could make aircraft as quiet as a hairdryer

PHYSICS NEWS
Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

Isotropic Systems and SES GS complete trials for of new connectivity for US Military

Quantum communication in space moves ahead

PHYSICS NEWS
PHYSICS NEWS
GMV develops a new maritime Galileo receiver

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

GMV at the core of the Galileo High Accuracy Service

PHYSICS NEWS
Flying in formation to reduce climate impact

Current air transport climate targets insufficient for trend reversal

US Air Force selects Electra for ultra-short takeoff aircraft development

Aviation's contribution to cutting climate change likely to be small

PHYSICS NEWS
Clearing the way toward robust quantum computing

Physicists uncover secrets of world's thinnest superconductor

Germany eyes technological leap with first quantum computer

Researchers tame silicon to interact with light for next-generation microelectronics

PHYSICS NEWS
Artificial intelligence breakthrough gives longer advance warning of ozone issues

Use of additional Metop-C and Fengyun-3 CD data improves regional weather forecasts

Rising greenhouse gases threaten Arctic ozone layer

Orbital Sidekick announces upcoming launch of its most powerful satellite: Aurora

PHYSICS NEWS
Turks defend nature against Erdogan's development push

GAO: Cost of toxic chemical cleanup at military bases to rise above estimates

About 25% of chemicals in plastics are 'substances of potential concern'

New urban planning software may inspire more sustainable cities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.