Space Industry and Business News  
EXO WORLDS
A new tool for 'weighing' unseen planets
by Staff Writers
Pasadena CA (JPL) Jan 09, 2020

The left side of this image shows light from the star 51 Pegasi spread out into a spectrum that reveals distinct wavelengths. The right-hand section shows a zoomed-in view of three wavelength lines from the star. Gaps in the lines indicate the presence of specific chemical elements in the star. Credit: Guomundur Kari Stefansson/Princeton University/NSF's National Optical-Infrared Astronomy Research Laboratory/KPNO/NSF/AURA

A new instrument funded by NASA and the National Science Foundation called NEID (pronounced "NOO-id"; sounds like "fluid") will help scientists measure the masses of planets outside our solar system - exoplanets - by observing the gravitational pull they exert on their parent stars. That information can help reveal a planet's composition, one critical aspect in determining its potential habitability.

NEID recently made its first observations on the WIYN 3.5-meter (11.5-foot) telescope at Kitt Peak National Observatory when it studied 51 Pegasi, which in 1995 was the first Sun-like star found to host an exoplanet.

Located in southern Arizona, the observatory sits on land of the Tohono O'odham Nation, and NEID's pronunciation evokes a word that roughly translates as "to see" in the Tohono O'odham language. The instrument finds and studies planets using what is called the radial velocity method, where scientists measure how the star wobbles slightly due to an orbiting planet's gravitational pull. The more massive the planet, the stronger its tug and the faster the star moves. (A smaller star is also more susceptible to a planet's gravitational pull than a larger one.)

Armed with measurements of a planet's diameter and mass, scientists can determine its density as well, which can typically reveal whether the planet is rocky (like Earth, Venus and Mars) or mostly gaseous (like Jupiter and Saturn).

This is a first step toward finding potentially habitable worlds similar to Earth. When applied to many planets, the method provides a more comprehensive view of what types are most common in the galaxy and how other planetary systems form.

Measuring Wobble
Planets in our own solar system cause our Sun to wobble: Jupiter, with its immense gravity, causes our home star to move back and forth at roughly 43 feet per second (13 meters per second), whereas Earth causes a more sedate movement of only 0.3 feet per second (0.1 meters per second). The speed is proportional to an orbiting planet's mass as well as to the mass of the star and the distance between those two objects.

Until now, instruments have typically been able to measure speeds as low as about 3 feet per second (1 meter per second), but NEID belongs to a new generation of instruments capable of achieving about three-times-finer precision.

It has the potential to detect and study rocky planets around stars smaller than the Sun. In addition, the scientists and engineers working with the instrument want to use it to demonstrate "extreme precision radial velocity" that could perhaps one day detect planets as small as Earth orbiting around Sun-like stars in the habitable zone, where liquid water could potentially exist on a planet's surface.

NEID will also confirm the presence and measure masses of planets discovered by NASA's recently launched TESS (or Transiting Exoplanet Survey Satellite) space telescope, which detects planets via a different method from NEID: TESS hunts for tiny dips in the light coming from nearby stars, an indication that a planet is crossing the star's face, or disk.

This approach can reveal how big around the planet is (information necessary for calculating the planet's density) and, based on the wobble, the length of its "year," or one trip around its star. NEID can also investigate planet candidates found by other telescopes.

Members of the NEID team will discuss the first light results at the 235th meeting of the American Astronomical Society in Honolulu.


Related Links
Kitt Peak National Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
New technique may give Webb Telescope new way to identify planets with oxygen
Greenbelt MD (SPX) Jan 07, 2020
Researchers may have found a way that NASA's James Webb Space Telescope can quickly identify nearby planets that could be promising for our search for life, as well as worlds that are uninhabitable because their oceans have vaporized. Since planets around other stars (exoplanets) are so far away, scientists cannot look for signs of life by visiting these distant worlds. Instead, they must use a cutting-edge telescope like Webb to see what's inside the atmospheres of exoplanets. One possible indica ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Air Force to cancel Raytheon contract for ground-based radar system

Study details how hydrogen causes embrittlement of steels

A new way to make chemicals by copying nature's tricks

China launches new communication technology experiment satellite

EXO WORLDS
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

EXO WORLDS
EXO WORLDS
China Focus: China to complete Beidou-3 satellite system in 2020

China's Beidou navigation system to provide unique services

From airport approaches to eCall in cars in 10 years with EGNOS

Satnav watching over rugby players

EXO WORLDS
BAE awarded $49.6 M to support Air Vehicle Planning System

State Department approves $2.75B sale of F-35Bs to Singapore

Airlines avoid Iran and Iraq airspace

For the safety of our pilots

EXO WORLDS
New method gives robust transistors

Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon

Computing with molecules: A big step in molecular spintronics

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

EXO WORLDS
PhD centre will nurture new leaders in Earth observation

Climate signals detected in global weather

Scientists find iron 'snow' in Earth's core

NASA Awards Launch Services Contract for Environmental Satellite Mission

EXO WORLDS
Trump announces sweeping changes to key environmental law

Bangladesh court orders government to ban single-use plastics

Microplastics disrupt local food chains, study finds

Scientists genetically engineer pollution-free poplar tree









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.