Space Industry and Business News  
TECH SPACE
A new material emits white light when exposed to electricity
by Staff Writers
Nagoya, Japan (SPX) Jul 25, 2017


An electric stimulus induces the hydrocarbon nanoring cycloparaphenylene (CPP)-iodine assembly to show electronic conductivity and white light emission.

Scientists at Nagoya University have developed a new way to make stimuli-responsive materials in a predictable manner. They used this method to design a new material, a mixture of carbon nanorings and iodine, which conducts electricity and emits white light when exposed to electricity. The team's new approach could help generate a range of reliable stimuli-responsive materials, which can be used in memory devices, artificial muscles and drug delivery systems, among other applications.

Stimuli-responsive materials alter their own properties in response to external stimuli, such as photo-irradiation, heat, pressure and electricity. This feature can be controlled for a wide range of uses, such as in optical discs, computer memories and displays, as well as artificial muscles and drug delivery systems.

Researchers have been working to develop new stimuli-responsive materials in a predictable fashion. However, it has been extremely difficult to design and control the complex molecular arrangements of the materials.

Now, a simple and reliable method to synthesize stimuli-responsive materials has been developed by a team led by Nagoya University's JST-ERATO Itami Molecular Nanocarbon Project and the Institute of Transformative Bio-Molecules (ITbM). The results of this study were recently reported in the journal Angewandte Chemie International Edition.

The 'responsive porous host' method takes a molecule with a porous framework and binds to it a 'guest' molecule that is likely to react to external stimuli. In this case, the team found that [10]cycloparaphenylene ([10]CPP), a hydrocarbon molecule composed of 10 para-connected benzene rings, made an ideal host when combined with iodine (I). Iodine situated itself inside the porous carbon rings, and reacted to electric stimulation. Not only did it conduct electricity, it also emitted a white light, which is unusual. Typically, many other components are required to obtain the white color. This shows the potential of the new material, [10]CPP-I, for next generation illumination systems.

"This 'responsive porous host' approach is expected to be applicable to different stimuli, such as photo-irradiation, heat application and pH change, and open the path for devising a generic strategy for the development of stimuli-responsive materials in a controllable and predictable fashion," said Dr. Hirotoshi Sakamoto, a group leader of the JST-ERATO project.

Synthesizing the material is surprisingly simple - the researchers mixed carbon nanorings (CPP) and iodine together, and let it dry. X-ray crystallography confirmed that the iodine molecules line up inside the hollow core of the aligned nanorings.

The team tried several variations of the mixture, changing the number of carbon nanorings, and found that 10 rings led to the most dynamic iodine atom movement and the most sensitive response to external environmental changes.

When a direct current was applied to [10]CPP-I, the bulk resistivity of the sample became approximately 380 times lower, indicating that it conducted electricity rather than resisting electrical transmission. The bulk resistivity in mixtures with 9 or 12 nanorings did not decrease nearly as much. These results show that pore size in the nanoring assembly controls the response to electrical stimulation.

"One of the most difficult parts of this research was to investigate how the electric conductivity of [10]CPP-I is turned on by electric stimuli," said Dr. Noriaki Ozaki, a postdoctoral researcher of the JST-ERATO project. "Although it only took us about three months to synthesize the molecule and discover its electric-stimuli-responsive properties, it took another year to discover the origin of its properties."

The team finally figured out how the electric conductivity of [10]CPP-I is turned on by electric stimuli, using X-ray absorption near-edge spectroscopy (XANES), Raman spectroscopy, and fluorescence spectroscopy. These analyses showed that the iodine atoms in the carbon nanorings form extended polyiodide chains when stimulated by electricity, which gave the material electrical conductivity.

The researchers also discovered that electric stimuli can switch the photoluminescence color of [10]CPP-I from a green-blue color to a white color. White luminescence means that the fluorescence spectrum of [10]CPP-I covers the whole visible light range. Spectral broadening is attributed to the irregular distribution of the electronic structures of CPPs, which is caused by the formation of polyiodide chains. The white luminescence of [10]CPP-I is a rare example of white illumination material from a single molecular assembly; white light emission is usually achieved by mixing several components of different colors.

"We were really excited to develop this simple yet powerful method to achieve the synthesis of external-stimuli-response materials," said Professor Kenichiro Itami, director of the JST-ERATO project and center director of ITbM.

Research Report: "Electrically-Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring-Iodine Assembly"

TECH SPACE
Signature analysis of single molecules using their noise signals
Osaka, Japan (SPX) Jul 14, 2017
Noise is low-frequency random fluctuation that occurs in many systems, including electronics, environments, and organisms. Noise can obscure signals, so it is often removed from electronics and radio transmissions. The origin of noise in nanoscale electronics is currently of much interest, and devices that operate using noise have been proposed. Materials with a high surface-to-volume rati ... read more

Related Links
Institute of Transformative Bio-Molecules (ITbM), Nagoya University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Using water displacement as the 3-D shape sensor for complex objects

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Nature-inspired material uses liquid reinforcement

TECH SPACE
North Dakota UAS Training Center Depends on IGC Satellite Connectivity

First UAVs, Now Ships - Connectivity for the next generation of remote naval operations

Northrop Grumman receives Australian satellite ground station contract

DISA extends Comtech satellite services to Marines

TECH SPACE
TECH SPACE
IAI, Honeywell Aerospace team for GPS anti-jam system

India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

Europe's Galileo satnav identifies problems behind failing clocks

TECH SPACE
Rising temperatures spell plane take-off woes: study

Flying cars and no more pilots in flight revolution: Airbus

France and Germany announce new joint fighter program

Honeywell, Pratt and Whitney contracted by Air Force for power system support

TECH SPACE
Researchers develop dynamic templates critical to printable electronics technology

Harnessing hopping hydrogens for high-efficiency OLEDs

High-precision control of printed electronics

Molecular electronics scientists shatter 'impossible' record

TECH SPACE
Nickel key to Earth's magnetic field, research shows

Quantum mechanics inside Earth's core

SSL To Provide Next-Generation Imaging Satellite Constellation To Digitalglobe

Computer vision techniques shed light on urban change

TECH SPACE
Cambodia bans overseas exports of coastal sand

200 green activists killed in 2016, record toll: watchdog

Study finds toxic mercury is accumulating in the Arctic tundra

Human activities worsen air quality in Dunhuang, a desert basin in China









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.