Space Industry and Business News  
CHIP TECH
A four-stroke engine for atoms
by Staff Writers
Vienna, Austria (SPX) Jul 07, 2022

The motion of the system in an energy landscape. The system moves back and forth, much like a rolling ball on a complicated surface.

If you switch a bit in the memory of a computer and then switch it back again, you have restored the original state. There are only two states that can be called "0 and 1".

However, an amazing effect has now been discovered at TU Wien (Vienna): In a crystal based on oxides of gadolinium and manganese, an atomic switch was found that has to be switched back and forth not just once, but twice, until the original state is reached again. During this double switching-on and switching-off process, the spin of gadolinium atoms performs one full rotation. This is reminiscent of a crankshaft, in which an up-and-down movement is converted into a circular movement.

This new phenomenon opens up interesting possibilities in material physics, even information could be stored with such systems. The strange atomic switch has now been presented in the scientific journal Nature.

Coupling of electrical and magnetic properties
Normally, a distinction is made between the electrical and magnetic properties of materials. Electrical properties are based on the fact that charge carriers move - for example electrons that travel through a metal or ions whose position is shifted.

Magnetic properties, on the other hand, are closely related to the spin of atoms - the particle's intrinsic angular momentum, which can point in a very specific direction, much like the Earth's axis of rotation points in a very specific direction.

However, there are also materials in which electrical and magnetic phenomena are very closely coupled. Prof. Andrei Pimenov and his team at the Institute of Solid State Physics at TU Wien are researching such materials.

"We exposed a special material made of gadolinium, manganese and oxygen to a magnetic field and measured how its electrical polarisation changed in the process," says Andrei Pimenov. "We wanted to analyse how the electrical properties of the material can be changed by magnetism. And surprisingly, we came across a completely unforeseen behaviour."

Back to the beginning in four steps
At the beginning, the material is electrically polarised - on one side it is positively charged, on the other side negatively charged. Then you switch on a strong magnetic field - and the polarisation changes very little. However, if you then switch the magnetic field off again, a dramatic change becomes apparent: suddenly the polarisation reverses: The side that was positively charged before is now negatively charged, and vice versa.

Now you can go through the same process a second time: Again, you switch on the magnetic field and the electric polarisation remains approximately constant. If you switch off the magnetic field, the polarisation reverses again and thus returns to its original state.

"This is extremely remarkable," says Andrei Pimenov. "We perform four different steps, each time the material changes its internal properties, but only twice does the polarisation change, so you reach the initial state only after the fourth step."

Four-stroke engine for gadolinium
A closer look shows that the gadolinium atoms are responsible for this behaviour: They change their spin direction at each of the four steps, each time by 90 degrees.

"In a sense, it's a four-stroke engine for atoms," says Andrei Pimenov. "In a four-stroke engine, too, it takes four steps to get back to the initial state - and the cylinder moves up and down twice in the process. In our case, the magnetic field moves up and down twice before the initial state is restored and the spin of the gadolinium atoms points in the original direction again."

Theoretically, such materials could be used to store information: a system with four possible states would have a storage capacity of two bits per switch, instead of the usual one bit of information for "0" or "1". But the effect is also particularly interesting for sensor technology: for example, one could produce a counter for magnetic pulses in this way.

The effect provides important new inputs for theoretical research: it is another example of a so-called "topological effect", a class of material effects that have been attracting a lot of attention in solid-state physics for years and should enable the development of new materials.

Research Report:'Topologically protected magnetoelectric switching in a multiferroic


Related Links
Vienna University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Giant Rashba semiconductors show unconventional dynamics
Berlin, Germany (SPX) Jul 07, 2022
In recent decades, the complexity and functionality of silicon-based technologies has increased exponentially, commensurate with the ever-growing demand for smaller, more capable devices. However, the silicon age is coming to an end. With increasing miniaturisation, undesirable quantum effects and thermal losses are becoming an ever-greater obstacle. Further progress requires new materials that harness quantum effects rather than avoid them. Spintronic devices, which use spins of electrons rather ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Sidus Space marks successful space-qualification of Dhruva space's satellite orbital deployer

Discs for fault detection

Using lasers and 'tow-trucks', Japanese firms target space debris

ICEYE expands its business to offer complete satellite missions for customers

CHIP TECH
Airbus to provide 42 satellite platforms and services to Northrop Grumman for the US Space Development Agency program

Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

Raytheon Intelligence and Space conducts Troposcatter comms test for US Army

SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

CHIP TECH
CHIP TECH
Safran acquires Orolia and plans to become the world leader in resilient PNT

The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

CHIP TECH
Poland buys 32 attack helicopters from Italy's Leonardo

Hong Kong suspends 'not effective' Covid flight ban

The hawk has landed: Braking mid-air to prioritize safety over energy or speed

Virgin Galactic picks Boeing subsidiary to build two motherships

CHIP TECH
A four-stroke engine for atoms

Giant Rashba semiconductors show unconventional dynamics

Physicists work to shrink microchips with first one-dimensional helium model system

Electrospinning promises major improvements in wearable technology

CHIP TECH
Discovery reveals large, year-round ozone hole over tropics

Earth from Space: Patagonia

Synspective releases First Image from its Small SAR Satellite "StriX-ss" that captures 3 cities around the world

Physics professor selected for NASA mission

CHIP TECH
'They're everywhere': microplastics in oceans, air and human body

Plans to rebuild Ukraine should address environment, EU commissioner says

India bans many single-use plastics to tackle waste

Pollution linked to 10% of cancer cases in Europe: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.