Space Industry and Business News  
STELLAR CHEMISTRY
A flash and a shudder may reveal inner workings of stars
by Staff Writers
Santa Barbara CA (SPX) Oct 29, 2019

file illustration only

In five billion years or so, when the Sun has used up the hydrogen in its core, it will inflate and turn into a red giant star. This phase of its life - and that of other stars up to twice its mass - is relatively short compared with the more than 10 billion-year life of the Sun. The red giant will shine 1,000 times brighter than the Sun, and suddenly the helium deep in its core will begin fusing to carbon in a process called the "helium core flash." After this, the star settles into 100 million years of quiet helium fusion.

Astrophysicists have predicted these flashes in theory and in models for 50 years, but none has ever been observed. However, a new study in Nature Astronomy Letters suggests this may soon change.

"The effects of helium core flash are clearly predicted by the models, but we have found no observations that directly reflect them," said coauthor Jorgen Christensen-Dalsgaard, a Simons Distinguished Visiting Scholar at UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP) and professor at Aarhus University in Denmark.

A star like the Sun is powered by fusing hydrogen into helium at temperatures around 15 million K. Helium, however, requires a much higher temperature than hydrogen, around 100 million K, to begin fusing into carbon, so it simply accumulates in the core while a shell of hydrogen continues to burn around it.

All the while, the star expands to a size comparable to the Earth's orbit. Eventually, the star's core reaches the perfect conditions, triggering a violent ignition of the helium: the helium core flash. The core undergoes several flashes over the next 2 million years, and then settles into a more static state where it proceeds to burn all of the helium in the core to carbon and oxygen over the course of around 100 million years.

Helium core flash plays an integral role in our understanding of the life cycles of low-mass stars. Unfortunately, gathering data from the cores of distant stars is incredibly difficult, so scientists have been unable to observe this phenomenon.

The power of modern space-based observatories like Kepler, CoRoT and now NASA's Transiting Exoplanet Survey Satellite (TESS) promises to change this. "The availability of very sensitive measurements from space has made it possible to observe subtle oscillations in the brightness of a very large number of stars," Christensen-Dalsgaard explained.

The helium core flash produces a series of different waves that propagate through the star. This causes the star to vibrate like a bell, which manifests as a weak variation in its overall brightness. Observations of stellar pulsations have already taught astronomers about the processes inside stars in much the way that geologists learn about the Earth's interior by studying earthquakes. This technique, known as asteroseismology, has grown to become a flourishing field in astrophysics.

The core flash happens quite suddenly, and like an earthquake, begins with a very energetic event followed by a series of successively weaker events over the next 2 million years - a relatively short period in the life of most stars. As shown in an early paper in 2012 led by KITP Director Lars Bildsten and KITP Senior Fellow Bill Paxton, the pulsation frequencies of these stars are very sensitive to the conditions in the core. As a result, asteroseismology could provide scientists with information that tests our understanding of these processes.

"We were excited at the time that these new space capabilities might allow us to confirm this long-studied piece of stellar evolution. However, we did not consider the even more exciting possibility that these authors explored of using the vigorously convecting star to actually get the star ringing," said Bildsten.

The main purpose of the new study was to determine whether these flashing regions could excite pulsations large enough for us to see. And after months of analysis and simulations, the researchers found that many should be relatively easy to observe.

"I was certainly surprised that the mechanism actually worked so well," said Christensen-Dalsgaard.

The new and promising angle detailed in the paper is that the astronomers have been studying the processes in a very special - and up to now not very well understood - type of star designated a subdwarf B star.

These are former red giants that, for unknown reasons, have lost most of their outer layer of hydrogen. Subdwarf B stars provide scientists a unique opportunity to more directly probe the hot core of a star. What's more, the remaining thin layer of hydrogen is not thick enough to dampen the oscillations from the repeated helium core flashes, giving the researchers a chance to potentially observe them directly.

This study provides the first observational information about the complex processes predicted by stellar models at the ignition of helium fusion. "This work took strong advantage of a series of fluid dynamical calculations led by former KITP Graduate Fellow Daniel Lecoanet," Bildsten noted. "If this all works out, these stars may provide a new testing ground for this fundamental puzzle in astrophysics."

Christensen-Dalsgaard said he is eager to apply these findings to actual data. And in fact, helium core flashes may already have been observed. Several of the stars observed by CoRoT and Kepler show unexplained oscillations that appear similar to predictions of helium core flashes. TESS will prove crucial in this future research, he explained, since it will observe a whole swath of stars, including several where these pulsations may be detectable. This will provide further strong tests of the models and an insight of what the future holds for our own Sun.

Research Report: "Asteroseismic Signatures of the Helium Core Flash"


Related Links
University Of California, Santa Barbara
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New research on giant radio galaxies defies conventional wisdom
Kent UK (SPX) Oct 28, 2019
Conventional wisdom tells us that large objects appear smaller as they get farther from us, but this fundamental law of classical physics is reversed when we observe the distant universe. Astrophysicists at the University of Kent simulated the development of the biggest objects in the universe to help explain how galaxies and other cosmic bodies were formed. By looking at the distant universe, it is possible to observe it in a past state, when it was still at a formative stage. At that time, galax ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space collisions a growing concern as Earth orbit gets more crowded

Automating collision avoidance

Magnets sustainably separate mixtures of rare earth metals

Integrating living cells into fine structures created in a 3D printer

STELLAR CHEMISTRY
EPS completes multiservice operational test, declared fully operational

China launches new communication technology experiment satellite

2nd Space Operations Squadron decommissions 22-year-old satellite

Next-gen satellite communications system ready for use, U.S. Navy says

STELLAR CHEMISTRY
STELLAR CHEMISTRY
UK should ditch plans for GPS to tival Galileo

ISRO works with Qualcomm to develop improved geo-location chipset

Satelles, Inc. Secures $26 Million in Series C Funding Round Led by C5 Capital

Highly accurate GPS is possible thanks to NASA

STELLAR CHEMISTRY
U.S. Air Force issues RFP for light attack aircraft for partner, ally support

Air Force F-15Es arrive in United Arab Emirates

An eagle's gliding ability relies on its wrist movements

Boeing cites US-China trade fight as it trims 787 output

STELLAR CHEMISTRY
Blanket of light may give better quantum computers

Radiation detector with the lowest noise in the world boosts quantum work

Study reveals how age affects perception of white LED light

Researchers develop tiny infrared spectrometer

STELLAR CHEMISTRY
Ozone hole in 2019 is the smallest on record since its discovery

Tiny particles lead to brighter clouds in the tropics

Joint Polar Satellite System's Microwave Instrument Fully Assembled

How aerosols affect our climate

STELLAR CHEMISTRY
Papua New Guinea shutters polluting Chinese plant

India's firecracker hub hit by anti-pollution drive

Boom or bust: Hanoi pollution crises expose growth risks

Sunlight degrades polystyrene much faster than expected









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.