Space Industry and Business News  
SOLAR DAILY
A Russian scientist improved nanofluids for solar power plants
by Staff Writers
Krasnoyarsk, Russia (SPX) Jan 23, 2018


This is the configuration of a solar power plant.

An associate of Siberian Federal University (SFU) teamed up with his foreign colleagues to increase the efficiency of the heat transfer medium used in solar power plants. The results of the study were published in Renewable Energy journal.

Solar power generation is an area of alternative energy that uses solar radiation to produce energy. Its advantage lies in the fact that sunlight is a renewable energy source, and the generation process is free of waste and emissions. However, solar power plants are extremely weather-dependent and cover vast territories.

Still, solar power plants (especially electrical power stations) are used in many countries. At such plants solar energy is concentrated in reservoirs filled with organic heat transfer medium. It is a liquid that circulates and transmits the heat to a container with water. The water boils and moves turbines which in turn generate electrical energy.

Many researchers work on the improvement of the heat transfer medium properties trying to speed up the boiling process and thus increase the productivity of solar plants. The authors of the study added nanoparticles of titanium dioxide TiO2 in different concentrations to the liquid consisting of biphenyl C12H10 and oxydiphenyl C12H10O. The scientists point out that they had to take a lot of parameters into consideration, including physical stability.

It means that the liquid should keep its physical properties for a long time, and the particles in it should not precipitate. When the researchers found out an optimal composition of the nanofluid, they studied its characteristics: viscosity, density, isobaric specific heat, and heat transfer coefficient.

"We've established that after titanium nanoparticles are added to the heat transfer fluid, its properties radically change. With the increase of temperature the heat transfer coefficient of the base fluid and titanium dioxide particles reduced, but after the nanofluid was prepared, the values started increasing," says Andrey Yasinskiy, a co-author of the work, senior lecturer at the department of non-ferrous metallurgy of the School of Non-ferrous Metals and Materials Science, SFU.

In the course of their work the scientists used optical spectroscopy to determine physical stability of the nanofluid and dynamic light scattering method to calculate the size of nanoparticles.

To evaluate the efficiency of the liquid, the researchers made different measurements three times a day for 30 days. In particular, they checked for the aggregation of particles, i.e. their agglutination leading to precipitation. When particles in a nanofluid precipitate, the effect from the admixtures reduces.

"The nanoliquid we've developed will help generate electrical energy in a more effective way. Naturally, we plan to implement it into industry-specific processes, but the whole work was performed with the use of the equipment provided by our Spanish colleagues, so further development of the study will depend on them. I can't but mention the contribution of professor Javier Navas of the University of Cadiz. The idea of the study was his," added the researcher.

SOLAR DAILY
Perovskite solar cells: Perfection not required
Berlin, Germany (SPX) Jan 17, 2018
Metal-organic perovskite layers for solar cells are frequently fabricated using the spin coating technique on industry-relevant compact substrates. These perovskite layers generally exhibit numerous holes, yet attain astonishingly high levels of efficiency. The reason that these holes do not lead to significant short circuits between the front and back contact has now been discovered by a ... read more

Related Links
Siberian Federal University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Scientists develop a new material for manipulating molecules

Self-healing fungi concrete could provide sustainable solution to crumbling infrastructure

Russian scientists found excitons in nickel oxide for the first time

Novel 3-D printing technique yields high-performance composites

SOLAR DAILY
Map of ionospheric disturbances to help improve radio network systems

Grumman to support BACN airborne communications system

Military defense market faces new challenges to acquiring SatCom platforms

Harris contracted by Army for radios for security force assistance brigades

SOLAR DAILY
SOLAR DAILY
China sends twin BeiDou-3 navigation satellites into space

18 satellites in exactEarth's real-time constellation now in service

'Quantum radio' may aid communications and mapping indoors, underground and underwater

Raytheon to provide GPS-guided artillery shells

SOLAR DAILY
Norway aims for all short-haul flights 100% electric by 2040

Iran says Trump has thrown Airbus deals into doubt

Saudi Arabia to receive 17 Blackhawk helicopters from Sikorsky

ASECNA to Deploy Space-Based ADS-B in Western and Central Africa

SOLAR DAILY
Mysteries of a promising spintronic material revealed

A major step forward in organic electronics

New oxide and semiconductor combination builds new device potential

Scientists manage to observe the inner structure of photonic crystals

SOLAR DAILY
Earth-i launches prototype of world's first full-colour, full-motion video satellite constellation

Unexpected environmental source of methane discovered

Jet stream changes since 1960s linked to more extreme weather

Frequent growth events and fast growth rates of fine aerosol particles in Beijing

SOLAR DAILY
Bulgaria's smoggy capital cleans up to host EU presidency

Campaigners slam UK plans on cutting plastic waste

US Interior Department welcomes National Park board resignations

Thames paddle-boarders try to turn the tide on plastic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.