Space Industry and Business News  
STELLAR CHEMISTRY
A New Experiment to Understand Dark Matter
by Staff Writers
Bonn, Germany (SPX) Jun 15, 2018

illustration only

Is dark matter a source of a yet unknown force in addition to gravity? The mysterious dark matter is little understood and trying to understand its properties is an important challenge in modern physics and astrophysics. Researchers at the Max Planck Institute for Radio Astronomy in Bonn, Germany, have proposed a new experiment that makes use of super-dense stars to learn more about the interaction of dark matter with standard matter. This experiment already provides some improvement in constraining dark matter properties, but even more progress is promised by explorations in the centre of our Milky Way that are underway.

Around 1600, Galileo Galilei's experiments brought him to the conclusion that in the gravitational field of the Earth all bodies, independent of their mass and composition feel the same acceleration. Isaac Newton performed pendulum experiments with different materials in order to verify the so-called universality of free fall and reached a precision of 1:1000. More recently, the satellite experiment MICROSCOPE managed to confirm the universality of free fall in the gravitational field of the Earth with a precision of 1:100 trillion.

These kind of experiments, however, could only test the universality of free fall towards ordinary matter, like the Earth itself whose composition is dominated by iron (32%), oxygen (30%), silicon (15%) and magnesium (14%). On large scales, however, ordinary matter seems to be only a small fraction of matter and energy in the universe.

It is believed that the so-called dark matter accounts for about 80% of the matter in our Universe. Until today, dark matter has not been observed directly. Its presence is only indirectly inferred from various astronomical observations like the rotation of galaxies, the motion of galaxy clusters, and gravitational lenses. The actual nature of dark matter is one of the most prominent questions in modern science. Many physicists believe that dark matter consists of so far undiscovered sub-atomic particles.

With the unknown nature of dark matter another important question arises: is gravity the only long-range interaction between normal matter and dark matter? In other words, does matter only feel the space-time curvature caused by dark matter, or is there another force that pulls matter towards dark matter, or maybe even pushes it away and thus reduces the overall attraction between normal matter and dark matter. That would imply a violation of the universality of free fall towards dark matter. This hypothetical force is sometimes labeled as "fifth force", besides the well-known four fundamental interactions in nature (gravitation, electromagnetic and weak interaction, strong interaction).

At present, there are various experiments setting tight limits on such a fifth force originating from dark matter. One of the most stringent experiments uses the Earth-Moon orbit and tests for an anomalous acceleration towards the Galactic center, i.e. the center of the spherical dark matter halo of our Galaxy. The high precision of this experiment comes from Lunar Laser Ranging, where the distance to the Moon is measured with centimeter precision by bouncing laser pulses of the retro reflectors installed on the Moon.

Until today, nobody has conducted such a fifth force test with an exotic object like a neutron star. "There are two reasons that binary pulsars open up a completely new way of testing for such a fifth force between normal matter and dark matter", says Lijing Shao from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, the first author of the publication in "Physical Review Letters". "First, a neutron star consists of matter which cannot be constructed in a laboratory, many times denser than an atomic nucleus and consisting nearly entirely of neutrons. Moreover, the enormous gravitational fields inside a neutron star, billion times stronger than that of the Sun, could in principle greatly enhance the interaction with dark matter."

The orbit of a binary pulsar can be obtained with high precision by measuring the arrival time of the radio signals of the pulsar with radio telescopes. For some pulsars, a precision of better than 100 nanoseconds can be achieved, corresponding to a determination of the pulsar orbit with a precision better than 30 meters.

To test the universality of free fall towards dark matter, the research team identified a particularly suitable binary pulsar, named PSR J1713+0747, which is at a distance of about 3800 light years from the Earth. This is a millisecond pulsar with a rotational period of just 4.6 milliseconds and is one of the most stable rotators amongst the known pulsar population. Moreover, it is in a nearly circular 68-day orbit with a white dwarf companion.

While pulsar astronomers usually are interested in tight binary pulsars with fast orbital motion when testing general relativity, the researchers were now looking for a slowly moving millisecond pulsar in a wide orbit. The wider the orbit, the more sensitive it reacts to a violation of the universality of free fall. If the pulsar feels a different acceleration towards dark matter than the white dwarf companion, one should see a deformation of the binary orbit over time, i.e. a change in its eccentricity.

"More than 20 years of regular high precision timing with Effelsberg and other radio telescopes of the European Pulsar Timing Array and the North American NANOGrav pulsar timing projects showed with high precision that there is no change in the eccentricity of the orbit", explains Norbert Wex, also from MPIfR. "This means that to a high degree the neutron star feels the same kind of attraction towards dark matter as towards other forms of standard matter."

"To make these tests even better, we are busily searching for suitable pulsars near large amounts of expected dark matter", says Michael Kramer, director at MPIfR and head of its "Fundamental Physics in Radio Astronomy" research group. "The ideal place is the Galactic centre where we use Effelsberg and other telescopes in the world to have a look as part of our Black Hole Cam project. Once we will have the Square Kilometre Array, we can make those tests super-precise", he concludes.

The findings are published in the journal Physical Review Letters (2018 June 15 issue).


Related Links
Max Planck Institute for Radio Astronomy
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Does Some Dark Matter Carry an Electric Charge?
Boston MA (SPX) May 31, 2018
Astronomers have proposed a new model for the invisible material that makes up most of the matter in the Universe. They have studied whether a fraction of dark matter particles may have a tiny electrical charge. "You've heard of electric cars and e-books, but now we are talking about electric dark matter," said Julian Munoz of Harvard University in Cambridge, Mass., who led the study that has been published in the journal Nature. "However, this electric charge is on the very smallest of scales." ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Job Openings - Space Traffic Controllers

Is there an end to the periodic table

Scientists find ordered magnetic patterns in disordered magnetic material

Cooling by laser beam

STELLAR CHEMISTRY
New Land Mobile Technology Driving The Need For Modern Satcom Capabilities

On-the-move communications system set to field this fall

Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

STELLAR CHEMISTRY
STELLAR CHEMISTRY
What exclusion from Galileo could mean for UK

Woman drowns in Prague drains playing GPS treasure hunt

GMV competing to develop the Galileo Ground Control Segment in brand new premises

Research shows how 'navigational hazards' in metro maps confuse travelers

STELLAR CHEMISTRY
Two killed, one injured in Bulgaria military helicopter crash

Sale of Apache helicopters, equipment to India gains approval

US approves sale of Apache attack choppers to India

Navy modifies Boeing contract for Super Hornet aircraft

STELLAR CHEMISTRY
Building nanomaterials for next-generation computing

Novel insulators with conducting edges

Toshiba completes $21 bn sale of chip unit

Time crystals may hold secret to coherence in quantum computing

STELLAR CHEMISTRY
Decades of satellite monitoring reveal Antarctic ice loss

GRACE-FO turns on 'range finder,' sees mountain effects

Wind satellite shows off

20 Years of Earth Data Now at Your Fingertips

STELLAR CHEMISTRY
EU Parliament to phase out plastic water bottles

Recycling plastic -- Japan style

Macron's environmental record under fire as critics tally 'retreats'

Mediterranean could become a 'sea of plastic': WWF









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.