Space Industry and Business News  
A New Class Of Interstellar Lighthouse

Artist's impression of the "super-aurorae" present at the magnetic poles of these brown dwarfs where the extremely bright beams of radiation originate. These beams sweep Earth once each time the dwarf rotates, producing the periodic pulses. CREDIT: Hallinan et al., NRAO/AUI/NSF
by Staff Writers
Socorro NM (SPX) Apr 19, 2007
Brown dwarfs, thought just a few years ago to be incapable of emitting any significant amounts of radio waves, have been discovered putting out extremely bright "lighthouse beams" of radio waves, much like pulsars. A team of astronomers made the discovery using the National Science Foundation's Very Large Array (VLA) radio telescope.

"These beams rotate with the brown dwarf, and we see them when the beam passes over the Earth. This is the same way we see pulses from pulsars," said Gregg Hallinan of the National University of Ireland Galway. "We now think brown dwarfs may be a missing link between pulsars and planets in our own Solar System, which also emit, but more weakly," he added.

Brown dwarfs are enigmatic objects that are too small to be stars but too large to be planets. They are sometimes called "failed stars" because they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars.

With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs were long thought to exist. However, it was not until 1995 that astronomers were able to actually find one. A few dozen now are known.

In 2001, a group of summer students at the National Radio Astronomy Observatory used the VLA to observe a brown dwarf, even though they had been told by seasoned astronomers that brown dwarfs are not observable at radio wavelengths.

Their discovery of a strong flare of radio emission from the object surprised astronomers and the students' scientific paper on the discovery was published in the prestigous scientific journal Nature.

Hallinan and his team observed a set of brown dwarfs with the VLA last year, and found that three of the objects emit extremely strong, repeating pulses of radio waves. They concluded that the pulses come from beams emitted from the magnetic poles of the brown dwarfs. This is similar to the beamed emission from pulsars, which are superdense neutron stars, and much more massive than brown dwarfs.

The characteristics of the beamed radio emission from the brown dwarfs suggest to the scientists that it is produced by a mechanism also seen at work in planets, including Jupiter and Earth.

This process involves electrons interacting with the planet's magnetic field to produce radio waves that then are amplified, or strengthened, by natural masers that amplify radio waves the same way a laser amplifies light waves.

"The brown dwarfs we observed are between planets and pulsars in the strength of their radio emissions," said Aaron Golden, also of the National University of Ireland Galway.

"While we don't think the mechanism that's producing the radio waves in brown dwarfs is exactly the same as that producing pulsar radio emissions, we think there may be enough similarities that further study of brown dwarfs may help unlock some of the mysteries about how pulsars work," he said.

While pulsars were discovered 40 years ago, scientists still do not understand the details of how their strong radio emissions are produced.

The brown dwarfs rotate at a much more leisurely pace than pulsars. While pulsars rotate -- and produce observed pulses -- typically several times a second to hundreds of times a second, the brown dwarfs observed with the VLA are showing pulses roughly once every two to three hours.

Hallinan and Golden worked with Stephen Bourke and Caoilfhionn Lane, also of the National University of Ireland Galway; Tony Antonova and Gerry Doyle of Armagh Observatory in Northern Ireland; Robert Zavala and Fred Vrba of the U.S.Naval Observatory in Flagstaff, Arizona; Walter Brisken of the National Radio Astronomy Observatory in Socorro, New Mexico; and Richard Boyle of the Vatican Observatory Research Group at Steward Observatory in Arizona.

The scientists presented their results to the Royal Astronomical Society's National Astronomy Meeting at the University of Central Lancashire in the United Kingdom.

Related Links
Very Large Array (VLA) radio telescope
Stellar Chemistry, The Universe And All Within It
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Hotter Than Expected Neutron Star Surfaces Help Explain Superburst Frequency
East Lansing MI (SPX) Apr 16, 2007
A new theoretical thermometer built from heavy-duty mathematics and computer code suggests that the surfaces of certain neutron stars run significantly hotter than previously expected. Hot enough, in fact, to at least partially answer an open question in astrophysics -- how to explain the observed frequency of ultra-violent explosions known as superbursts that sometimes ignite on such stars' surfaces?







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • Russia Puts 16 Foreign Satellites Into Orbit
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite
  • Russia To Launch Four US Satellites In May
  • PSLV-C8 To Be Launched On April 23

  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command
  • Harris Donates OS/COMET For Use In FalconSAT Program

  • Colombia Launches First Satellite
  • A New Generation Of Space Tethers
  • Rolls-Royce Selects Bristol University For Composites Research
  • Tests Demonstrate Functionality Of Next Generation Processor Router For TSAT

  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office
  • Kathryn Kynard Plays Key Role In Ares I Upper Stage Engine Development
  • William Shernit Joins Intelsat General As President and CEO

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract
  • China Launches Compass Navigation Satellite
  • GPS Significantly Impacted By Powerful Solar Radio Burst
  • Russia To Expand Glonass Satellite Group By Year End

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement