Space Industry and Business News  
STELLAR CHEMISTRY
ALMA Spots Twinkling Heart of Milky Way
by Staff Writers
Tokyo, Japan (SPX) May 25, 2020

Hot spots circling around the black hole could produce the quasi-periodic millimeter emission detected with ALMA.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) found quasi-periodic flickers in millimeter-waves from the center of the Milky Way, Sagittarius (Sgr) A*. The team interpreted these blinks to be due to the rotation of radio spots circling the supermassive black hole with an orbit radius smaller than that of Mercury. This is an interesting clue to investigate space-time with extreme gravity.

"It has been known that Sgr A* sometimes flares up in millimeter wavelength," tells Yuhei Iwata, the lead author of the paper published in the Astrophysical Journal Letters and a graduate student at Keio University, Japan.

"This time, using ALMA, we obtained high-quality data of radio-wave intensity variation of Sgr A* for 10 days, 70 minutes per day. Then we found two trends: quasi-periodic variations with a typical time scale of 30 minutes and hour-long slow variations."

Astronomers presume that a supermassive black hole with a mass of 4 million Suns is located at the center of Sgr A*. Flares of Sgr A* have been observed not only in millimeter wavelength, but also in infrared light and X-ray. However, the variations detected with ALMA are much smaller than the ones previously detected, and it is possible that these levels of small variations always occur in Sgr A*.

The black hole itself does not produce any kind of emission. The source of the emission is the scorching gaseous disk around the black hole. The gas around the black hole does not go straight to the gravitational well, but it rotates around the black hole to form an accretion disk.

The team focused on short timescale variations and found that the variation period of 30 minutes is comparable to the orbital period of the innermost edge of the accretion disk with the radius of 0.2 astronomical unit (1 astronomical unit corresponds to the distance between the Earth and the Sun: 150 million kilometers).

For comparison, Mercury, the solar system's innermost planet, circles around the Sun at a distance of 0.4 astronomical unit. Considering the colossal mass at the center of the black hole, its gravity effect is also extreme in the accretion disk.

"This emission could be related with some exotic phenomena occurring at the very vicinity of the supermassive black hole," says Tomoharu Oka, a professor at Keio University.

Their scenario is as follows. Hot spots are sporadically formed in the disk and circle around the black hole, emitting strong millimeter waves. According to Einstein's special relativity theory, the emission is largely amplified when the source is moving toward the observer with a speed comparable to that of light.

The rotation speed of the inner edge of the accretion disk is quite large, so this extraordinary effect arises. The astronomers believe that this is the origin of the short-term variation of the millimeter emission from Sgr A*.

The team supposes that the variation might affect the effort to make an image of the supermassive black hole with the Event Horizon Telescope.

"In general, the faster the movement is, the more difficult it is to take a photo of the object," says Oka. "Instead, the variation of the emission itself provides compelling insight for the gas motion. We may witness the very moment of gas absorption by the black hole with a long-term monitoring campaign with ALMA." The researchers aim to draw out independent information to understand the mystifying environment around the supermassive black hole.

Research Report: "Time Variations in the Flux Density of Sgr A* at 230 GHz Detected with ALMA"


Related Links
National Astronomical Observatory Of Japan
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Milky Way could be catapulting stars into its outer halo, UCI astronomers say
Irvine CA (SPX) Apr 21, 2020
Though mighty, the Milky Way and galaxies of similar mass are not without scars chronicling turbulent histories. University of California, Irvine astronomers and others have shown that clusters of supernovas can cause the birth of scattered, eccentrically orbiting suns in outer stellar halos, upending commonly held notions of how star systems have formed and evolved over billions of years. Hyper-realistic, cosmologically self-consistent computer simulations from the Feedback in Realistic Environme ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Machine-learning tool could help develop tougher materials

Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

New algorithm predicts optimal materials among all possible compounds

The flame of discovery grows as Saffire sets new fires in space

STELLAR CHEMISTRY
NIST researchers boost microwave signal stability a hundredfold

IBCS Goes Agile

Northrop Grumman to rapidly develop net-centric gateway

Dominate the electromagnetic spectrum

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

Velodyne Lidar announces multi-year sales agreement with GeoSLAM

Galileo positioning aiding Covid-19 reaction

STELLAR CHEMISTRY
Air Force removes minimum height requirement for pilots

F-35A crashes at Eglin AFB, Fla., with pilot safely ejecting

Making Future Vertical Lift Open, Safe and Secure

Lockheed Martin Announces Proactive Measures To Mitigate COVID-19 Impacts To F-35 Production

STELLAR CHEMISTRY
'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

Scientists break the link between a quantum material's spin and orbital states

Light, fantastic: the path ahead for faster, smaller computer processors

STELLAR CHEMISTRY
ESA's oldest Earth-observer images Delhi airport

Common CFC replacements break down into persistent pollutants

Tiny NASA satellite captures first image of clouds and aerosols

New, rapid mechanism for atmospheric particle formation

STELLAR CHEMISTRY
In China, quarantine improves air and prevents thousands of premature deaths

Up to 90 percent fewer condensation trails due to reduced air traffic over Europe

Gloves and masks litter Middle East amid virus panic

Italy expected to delay tax on plastic until 2021: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.