Space Industry and Business News  
TIME AND SPACE
ALMA dives into Black Hole's 'Sphere of Influence'
by Staff Writers
Socorro NM (SPX) Aug 08, 2019

ALMA has made the most precise measurements of cold gas swirling around a supermassive black hole -- the cosmic behemoth at the center of the giant elliptical galaxy NGC 3258. The multi-color ellipse reflects the motion of the gas orbiting the black hole, with blue indicating motion toward us and red motion away from us. The inset box represents how the orbital velocity changes with distance from the black hole. The material was found to rotate faster the closer in the astronomers observed to the black hole, enabling them to accurately calculate its mass: a whopping 2.25 billion times the mass of our Sun.

What happens inside a black hole stays inside a black hole, but what happens inside a black hole's "sphere of influence" - the innermost region of a galaxy where a black hole's gravity is the dominant force - is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

New observations with the Atacama Large Millimeter/submillimeter Array (ALMA) provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole.

This disk lies at the center of NGC 3258, a massive elliptical galaxy about 100 million light-years from Earth. Based on these observations, a team led by astronomers from Texas A and M University and the University of California, Irvine, have determined that this black hole weighs a staggering 2.25 billion solar masses, the most massive black hole measured with ALMA to date.

Though supermassive black holes can have masses that are millions to billions of times that of the Sun, they account for just a small fraction of the mass of an entire galaxy. Isolating the influence of a black hole's gravity from the stars, interstellar gas, and dark matter in the galactic center is challenging and requires highly sensitive observations on phenomenally small scales.

"Observing the orbital motion of material as close as possible to a black hole is vitally important when accurately determining the black hole's mass," said Benjamin Boizelle, a postdoctoral researcher at Texas A and M University and lead author on the study appearing in the Astrophysical Journal. "These new observations of NGC 3258 demonstrate ALMA's amazing power to map the rotation of gaseous disks around supermassive black holes in stunning detail."

Astronomers use a variety of methods to measure black hole masses. In giant elliptical galaxies, most measurements come from observations of the orbital motion of stars around the black hole, taken in visible or infrared light.

Another technique, using naturally occurring water masers (radio-wavelength lasers) in gas clouds orbiting around black holes, provides higher precision, but these masers are very rare and are associated almost exclusively with spiral galaxies having smaller black holes.

During the past few years, ALMA has pioneered a new method to study black holes in giant elliptical galaxies. About 10 percent of elliptical galaxies contain regularly rotating disks of cold, dense gas at their centers. These disks contain carbon monoxide (CO) gas, which can be observed with millimeter-wavelength radio telescopes.

By using the Doppler shift of the emission from CO molecules, astronomers can measure the velocities of orbiting gas clouds, and ALMA makes it possible to resolve the very centers of galaxies where the orbital speeds are highest.

"Our team has been surveying nearby elliptical galaxies with ALMA for several years to find and study disks of molecular gas rotating around giant black holes," said Aaron Barth of UC Irvine, a co-author on the study. "NGC 3258 is the best target we've found, because we're able to trace the disk's rotation closer to the black hole than in any other galaxy."

Just as the Earth orbits around the Sun faster than Pluto does because it experiences a stronger gravitational force, the inner regions of the NGC 3258 disk orbit faster than the outer parts due to the black hole's gravity.

The ALMA data show that the disk's rotation speed rises from 1 million kilometers per hour at its outer edge, about 500 light-years from the black hole, to well over 3 million kilometers per hour near the disk's center at a distance of just 65 light-years from the black hole.

The researchers determined the black hole's mass by modeling the disk's rotation, accounting for the additional mass of the stars in the galaxy's central region and other details such as the slightly warped shape of the gaseous disk.

The clear detection of rapid rotation enabled the researchers to determine the black hole's mass with a precision better than one percent, although they estimate an additional systematic 12 percent uncertainty in the measurement because the distance to NGC 3258 is not known very precisely. Even accounting for the uncertain distance, this is one of the most highly precise mass measurements for any black hole outside of the Milky Way galaxy.

"The next challenge is to find more examples of near-perfect rotating disks like this one so that we can apply this method to measure black hole masses in a larger sample of galaxies," concluded Boizelle. "Additional ALMA observations that reach this level of precision will help us better understand the growth of both galaxies and black holes across the age of the universe."

Research Report: "A Precision Measurement of the Mass of the Black Hole in NGC 3258 from High-Resolution ALMA Observations of its Circumnuclear Disk"


Related Links
National Radio Astronomy Observatory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
X-rays Spot Spinning Black Holes Across Cosmic Sea
Huntsville AL (SPX) Jul 05, 2019
Like whirlpools in the ocean, spinning black holes in space create a swirling torrent around them. However, black holes do not create eddies of wind or water. Rather, they generate disks of gas and dust heated to hundreds of millions of degrees that glow in X-ray light. Using data from NASA's Chandra X-ray Observatory and chance alignments across billions of light years, astronomers have deployed a new technique to measure the spin of five supermassive black holes. The matter in one of these cosmi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Millennium Space Systems to test orbital debris solutions with TriSept, Rocket Lab and Tethers Unlimited

How roads can help cool sizzling cities

Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

TIME AND SPACE
US Air Force awards contract for Enterprise Ground Services satellite operations

Russia launches Meridian military satellite from Plesetsk Cosmodrome

Army project may advance quantum materials, efficient communication networks

Newly established US Space Agency offers sneak peek at satellite layout

TIME AND SPACE
TIME AND SPACE
Evolution of space, 2SOPS prepares for GPS Block III

GPS signals no longer disrupted in Israeli airspace

An AI technology to reveal the characteristics of animal behavior only from the trajectory

European Galileo satellite navigation system resumes Initial Services

TIME AND SPACE
U.S. Air Force gets F-35A fighter airborne five hours after delivery

Rockwell Collins receives $40.2M contract for E-8 simulator support

Making a case for returning airships to the skies

Cathay Pacific reports profit but warns of HK protests impact

TIME AND SPACE
Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

Extraordinarily thick organic light-emitting diodes solve nagging issues

Scientists send light through 2D crystal layer in quantum computing leap

TIME AND SPACE
NASA's Spacecraft Atmosphere Monitor Goes to Work Aboard the International Space Station

NASA targets coastal ecosystems with new space sensor

CryoSat conquers ice on Arctic lakes

Roscosmos postpones launch of second Arctic weather satellite

TIME AND SPACE
Paris downplays Notre-Dame lead poisoning fears

'I like plastic': Pakistan's toxic 'love affair' with waste

Lebanese kick up stink over smell fix for garbage woes

Curbing air pollution won't speed up global warming









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.