Space Industry and Business News
SOLAR DAILY
AI speeds up material discovery for advanced perovskite solar technology
illustration only
AI speeds up material discovery for advanced perovskite solar technology
by Riko Seibo
Tokyo, Japan (SPX) Jul 30, 2025

A collaborative team from Peking University and its Shenzhen Graduate School has developed machine learning models that can swiftly and precisely predict critical electronic properties of halide perovskites - key materials in next-generation solar cells. Their work aims to streamline the search for optimal compounds by focusing on essential parameters such as conduction band minimum (CBM), valence band maximum (VBM), and bandgap energy.

Halide perovskites, with their ABX3 crystal structure, are promising materials due to their impressive photovoltaic performance, ease of fabrication, and low cost. These materials are highly tunable, allowing researchers to optimize electronic properties to enhance power conversion efficiency (PCE), which has now surpassed 27% in single-junction and over 30% in tandem solar cells. However, persistent challenges - such as lead toxicity and stability issues - necessitate the discovery of improved compositions with ideal band structures.

Precise knowledge of a perovskite's CBM, VBM, and bandgap is fundamental to optimizing device efficiency, as these properties dictate light absorption and charge transport capabilities. Traditional methods for analyzing these factors, like high-throughput screening and density functional theory (DFT) simulations, are reliable but resource-heavy.

To address this, the researchers employed Extreme Gradient Boosting (XGB) to build predictive models capable of estimating band structure features across both inorganic and hybrid halide perovskites. Their XGB model yielded high accuracy, achieving test set R values of 0.8298 for CBM, 0.8481 for VBM, and 0.8008 for bandgap predictions using the Heyd-Scuseria-Ernzerhof (HSE) functional. Using the Perdew-Burke-Ernzerhof (PBE) functional for a broader dataset, the model improved further with an R of 0.9316 and a mean absolute error (MAE) of just 0.102 eV.

In addition, SHAP (SHapley Additive exPlanations) analysis revealed which chemical and structural features most influence electronic energy levels, offering a roadmap for designing better-performing perovskites. This approach not only accelerates the pace of discovery but also provides eco-friendly and cost-effective alternatives to traditional methods.

Looking forward, the researchers aim to integrate the interpretability of shallow machine learning models with the depth of neural networks to further refine materials discovery. Their approach holds significant promise for developing next-generation solar technologies with improved efficiency, stability, and environmental safety.

Research Report:Machine learning for energy band prediction of halide perovskites

Related Links
Songshan Lake Materials Laboratory
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Puerto Rico's community-owned solar power: alternative to frequent blackouts
Adjuntas, Puerto Rico (AFP) July 25, 2025
Enid Medina Guzman always has candles on hand - not for creating ambiance, but because one of the blackouts that plague Puerto Rico could strike at any time. But she is hopeful the lingering hardship will soon be a thing of the past: solar panels are being installed on her home as part of a community program promoting energy independence. At her house nestled high in the mountains of the lush tropical forests of the archipelago's central city Adjuntas, "it rains a lot and when there's a little ... read more

SOLAR DAILY
Dangerous dreams: Inside internet's 'sleepmaxxing' craze

All five miners found dead after Chilean mine collapse

Ancient Roman concrete longevity offers mixed sustainability benefits

US tech titan earnings rise on AI as economy roils

SOLAR DAILY
SES and Luxembourg to expand military satcom with next generation GovSat2

GovSat selects Thales Alenia Space to build secure satellite for military communications

ALLSPACE to Develop 5G NTN Satcom Integration with ESA Funding

Quantum Secure Space Tech Partnership Launched by Space TS and Synergy Quantum

SOLAR DAILY
SOLAR DAILY
Bridges gain new voice through real time GNSS monitoring of structural behavior

Galileo enhances security edge with new authentication service led by GMV

ESA and Neuraspace develop autonomous satellite navigation technologies

Bogong moths rely on stars and magnetic fields to guide epic migrations

SOLAR DAILY
Hong Kong's Cathay Pacific unveils deal to buy 14 Boeing jets

Heathrow unveils expansion plan for third runway

US Army helicopter in deadly Washington crash had technical issues

Navy F-35 jet crashes in California

SOLAR DAILY
Nvidia says no 'backdoors' in chips as China questions security

China summons chip giant Nvidia over alleged security risks

Samsung quarterly operating profits plunge as US curbs chip exports to China

SK hynix posts record profits on surging AI demand

SOLAR DAILY
China launches remote sensing satellite for Pakistan using Kuaizhou rocket

Spire to Provide ESA with Satellite Weather Data for European Research

Cosmic dust particles reveal snapshot of Earth's ancient air

Satellite developed by NASA, India to map Earth down to centimeter

SOLAR DAILY
US orders staff evacuation 6 months after Zambia mine spill

Plastic pollution treaty talks open with 'global crisis' warning

Interior Department allows Rosebud strip mine to reopen in Montana

Decision time as plastic pollution treaty talks begin

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.