Space Industry and Business News  
SOLAR DAILY
AFRL collaborates in break-through solar power development
by Jeanne Dailey for AFRL News
Kirtland AFB NM (AFNS) Jul 13, 2020

stock image

The Air Force Research Laboratory Space Vehicles Directorate is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) in maturing a technology for fabricating high-efficiency solar cells in a high-throughput, low-cost manner via a technology called dynamic hydride vapor phase epitaxy, or D-HVPE.

"We have been tracking the DOE's investments at NREL in this area for many years," said David Wilt, AFRL senior physicist. "The team at NREL invented the D-HVPE technology and are world experts in using this technology to create high-efficiency solar cells."

According to a July 26, 2019 article on the NREL website, researchers at NREL "have refined the D-HVPE process to produce solar cells more than 20 times faster than the process now commonly used called metalorganic vapor-phase epitaxy (MOVPE)."

"Current solar cell and panel production is costly," said Wilt. "The end goal of D-HVPE technology, as well as the other related efforts, is to enable high-efficiency space solar cells and panels to be produced in large quantity and at lower cost to enable more and larger space uses, as well as a variety of Department of Defense terrestrial applications."

NREL sees valuable benefits in collaborating with AFRL on the D-HVPE technology.

"Partnering with the Air Force is important so that we can mature D-HVPE technology to the point where it could be transitioned to private industry," said Kelsey Horowitz, NREL lead researcher. "The Air Force also assists NREL in better understanding the solar cell technology requirements and needs for a range of defense applications."

D-HVPE is promising for both defense and commercial use. "If we are successful in reducing all of the high cost solar cell fabrication processes, we may enable the use of these high-efficiency cells in broader civilian and commercial applications," Horowitz said. "These include applications that require higher power per area and value flexibility, like on ships, electric vehicles, or portable devices."

The AFRL Space Vehicles Directorate has been a leader in space solar power systems for decades and in collaboration with industry partners, has made huge advancements in photovoltaic-based spacecraft power technologies.

"The maturation of D-HVPE technology will build upon AFRL's other research developments with the goal of providing game-changing renewable power solutions for the warfighter," said Wilt. "For example, space-solar-beaming, central to AFRL's SSPIDR project, needs affordable high efficiency solar cells such as those produced by D-HVPE," Wilt said. "Scientists at AFRL anticipate using these next-gen solar cells to gather the sun's energy, convert it to radio frequency and beam it to a receiver on earth."


Related Links
Air Force Research Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Crystal structure discovered almost 200 years ago could hold key to solar cell revolution
Corvallis OR (SPX) Jul 03, 2020
Solar energy researchers at Oregon State University are shining their scientific spotlight on materials with a crystal structure discovered nearly two centuries ago. Not all materials with the structure, known as perovskites, are semiconductors. But perovskites based on a metal and a halogen are, and they hold tremendous potential as photovoltaic cells that could be much less expensive to make than the silicon-based cells that have owned the market since its inception in the 1950s. Enough po ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Europe radioactivity likely linked to nuclear reactor: UN watchdog

Deutsche Bank teams up with Google in cloud services

The lightest shielding material in the world

BAE Systems Delivers First Radiation-Hardened RAD5545 Radios

SOLAR DAILY
UK Govt to acquire OneWeb satellite constellation

USSF Commercial SATCOM Office announces development of new security program

FFI selects GomSpace to build military communication satellite

DARPA pit boss contractors SEAKR and SSCI team with DARPA for Blackjack early risk reduction orbital flights

SOLAR DAILY
SOLAR DAILY
GPS 3 satellite on route to orbital slot under own propulsion

Beidou system's applications spread around globe

Microchip releases major update to BlueSky GNSS Firewall

Beidou system sees wide application across the country

SOLAR DAILY
India greenlights purchase of 33 Russian fighter jets

Lockheed Martin Delivers F-35 Distributed Mission Training Capability

Navy awards $360M to Lockheed for 4 F-35Cs

UN agency cuts airlines some slack on CO2 emissions

SOLAR DAILY
Thermophones offer new route to radically simplify array design, research shows

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

New research advances Army's quest for quantum networking

Laser allows solid-state refrigeration of a semiconductor material

SOLAR DAILY
In the right hands, NASA satellite data and analysis make Earth better

Six new missions for the Europe's Copernicus program

Study quantifies socioeconomic benefits of satellites for harmful algal bloom detection

NASA-NOAA's Suomi NPP Satellite Analyzes Saharan Dust Aerosol Blanket

SOLAR DAILY
Taking the measure of noise pollution during COVID lockdown

Plastic-tracking yacht adds splash of environmentalism to ocean racing

E-waste levels surge 20 percent in 5 years: UN

Japan begins charging for plastic bags









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.