Space Industry and Business News  
911 Calls Offer Potential Early Warning System

By combining the call data with topographic images from Google Earth, researchers conducted a spatiotemporal analysis - relating both space and time together - of typical call activity in order to set parameters that would automatically alert viewers of abnormally high call rates. These 'hotspots', or clusters of activity within certain areas and within predetermined lengths of time, were then directly correlated to specific events in those areas such as an earthquake, explosion or fire.
By Jan Zverina
La Jolla CA (SPX) Feb 14, 2008
When confronted with emergencies or natural disasters, such as the wildfires that raged through San Diego and Los Angeles counties last October or the tornadoes that hit the southern U.S. last week, residents often dial 9-1-1 as their first course of action.

Now, UC San Diego researchers from the San Diego Supercomputer Center and Scripps Institution of Oceanography, using 9-1-1 data from these wildfires and other emergency situations, have devised a method to analyze and visually display these calls to detect specific patterns. Their ultimate goal: to assist in developing an early warning system and coordinate responses on a wider scale that could one day save lives and limit property damage.

"Because of the time-critical element within the first responder community, this research could assist emergency service providers and organizations in allocating appropriate levels of both human and financial resources as part of their overall planning," said Chaitan Baru, SDSC Distinguished Scientist and one of the project's principal investigators.

Baru, along with researchers from Scripps Oceanography, developed the pattern-detecting method - a computer algorithm - after analyzing nearly three years of 9-1-1 call data from the San Francisco Bay area, and more than 20 months of similar data from throughout San Diego County.

The data included time/date/length of the emergency calls, how quickly each call was answered, and phone type (i.e. business, residence or wireless). To protect privacy, the 9-1-1 call locations were converted into latitude and longitude coordinates and then dithered, or randomly blurred, so that the precise location could not be recovered.

By combining the call data with topographic images from Google Earth, researchers conducted a spatiotemporal analysis - relating both space and time together - of typical call activity in order to set parameters that would automatically alert viewers of abnormally high call rates. These 'hotspots', or clusters of activity within certain areas and within predetermined lengths of time, were then directly correlated to specific events in those areas such as an earthquake, explosion or fire.

While SDSC researchers have been doing only retrospective analyses based on collected data, it is a vital first step to creating visual analyses in real time and on a much larger geographic scale, which would require supercomputing resources for data storage and graphics.

"We think this kind of research could enable a command center at the state or county level to complement their current 9-1-1 system with advanced visualization techniques and advanced clustering techniques," said Hector Jasso, a data mining specialist and SDSC co-researcher on the project, called "Spatiotemporal Analysis of 9-1-1 Call Stream Data."

Currently, California's 9-1-1 emergency phone system is overseen by the state's Department of General Services. The DGS coordinates with phone services such as Verizon and AT and T to route the calls to a Public Safety Answering Point (PSAP), where an operator either provides direct assistance or redirects the call to an emergency service provider.

Despite a good level of coordination and emergency services response during the recent southern California wildfires, most PSAPs do not have the capability to coordinate visually via computer- generated images with other PSAPs in their area, and there is no system currently in place to automatically reroute an emergency call to another PSAP if the initial point is overloaded. In addition, calls are often transferred multiple times depending on the type of emergency, which affects overall response times.

Baru believes the SDSC/Scripps Oceanography project could also be beneficial to local governments, many of which are wrestling with budget constraints while striving to provide high levels of emergency service. "It could also allow more efficient coordination of similar services across a greater area in the event of a larger scale disaster," he said.

Moreover, the research may be useful in detecting the weaker links in any emergency response system such as dropped calls, or identifying areas that may be vulnerable to communication blackouts. "Creating some kind of load sharing strategy among the PSAPs certainly makes a lot of sense," said William Hodgkiss, a Scripps Oceanography professor and co-PI on the project.

Other participants in the 9-1-1 call analysis project include Tony Fountain, co-PI and SDSC research scientist. Public Safety Network, a Santa Barbara, Calif., company specializing in 9-1-1 emergency call information, also collaborated with researchers on the project. PSN is working at the local, regional and state levels to update and optimize the emergency call infrastructure.

The team will be presenting their latest findings at the URISA/NENA (Urban and Regional Information Systems Association and National Emergency Number Association) conference in Portland, Ore., April 7-10, and the Digital Government Society of North America's international conference to be held in Montreal, Canada, May 18-21.

Related Links
UC San Diego
Bringing Order To A World Of Disasters
A world of storm and tempest
When the Earth Quakes



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Robotic Rats To Aid In Rescue Missions
Rehovot, Israel (SPX) Feb 12, 2008
A new initiative, bringing together nine research groups from seven countries, including teams of robotics and brain researchers from Europe, the USA and Israel, has recently been set up with the aim of imitating nature. Based on principles of active sensing adopted widely in the animal kingdom, the multinational team is developing innovative touch technologies, including a 'whiskered' robotic rat.







  • HP And Qualcomm To Deliver Options For Worldwide Internet Access
  • Google's Android debuts in Barcelona
  • Nokia says to launch touch-screen phone in late '08
  • Lenovo pitching PCs to wider French market

  • ILS Proton Launches THOR 5 Satellite
  • Bigelow Aerospace And Lockheed Martin Converging On Terms For Launch Services
  • USAF Awards United Launch Alliance Three Delta IV Missions
  • Vandenberg Prepares For First Atlas V Launch

  • Military Aircraft To Perform Aviation Safety Research
  • Birds Bats And Insects Hold Secrets For Aerospace Engineers
  • Flapping-wing airplanes are envisioned
  • British-designed jet could reach Australia in under five hours

  • EADS DS Delivers Army Command And Control Information System To Franco-German Brigade
  • Thompson Files: Electronic war blindness
  • Harris Provides American Forces Network With Broadcast System To Reach One Million Troops
  • Raytheon Wins Air Force Satellite Communications Contract

  • Lockheed Martin-Built A2100 Satellite Fleet Achieves 200 Years In Orbit
  • Game consoles can model black holes, drug molecules
  • World's mobile phone industry heads for Barcelona
  • 3D pen 'feels' virtual organ images

  • Michael Larkin Appointed Executive Vice President Of Orbital's Satellite Business Unit
  • Boeing Integrated Defense Systems Looks To Future With Leadership Changes
  • Raytheon Space and Airborne Systems Names Carey VP For ISR Systems
  • NASA Selects Jaiwon Shin To Head Aeronautics Research

  • Indonesia To Develop New EO Satellite
  • Russia To Launch Space Project To Monitor The Arctic In 2010
  • New Radar Satellite Technique Sheds Light On Ocean Current Dynamics
  • SPACEHAB Subsidiary Wins NASA Orbiting Carbon Observatory Contract

  • Zenlet Platform Boosts Location-Based Content Delivery To Mobile Devices
  • Alanco's StarTrak Accelerates Penetration Of Refrigerated Truck/Trailer Market
  • Speed Traps Worldwide Shown With Online Mapping Tool
  • Future Of Social Networking Explored In UW's Computer Science Building

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement