Subscribe free to our newsletters via your
. Space Industry and Business News .




INTERNET SPACE
10 times more throughput on optic fibers
by Staff Writers
Lausanne, Switzerland (SPX) Dec 09, 2013


This image shows EPFL scientists Luc Thevenaz (Fiber Optics Group (GFO)) and Camille Bres (Photonics Systems Laboratory (PHOSL)). Credit: Alain Herzog / EPFL.

Optical fibers carry data in the form of pulses of light over distances of thousands of miles at amazing speeds. They are one of the glories of modern telecommunications technology. However, their capacity is limited, because the pulses of light need to be lined up one after the other in the fiber with a minimum distance between them so the signals don't interfere with each other. This leaves unused empty space for data in the fiber.

EPFL's Camille Bres and Luc Thevenaz have come up with a method for fitting pulses together within the fibers, thereby reducing the space between pulses. Their approach, which has been published in Nature Communications, makes it possible to use all the capacity in an optical fiber. This opens the door to a ten-fold increase in throughput in our telecommunications systems.

Fiber optics at a crossroads
"Since it appeared in the 1970s, the data capacity of fiber optics has increased by a factor of ten every four years, driven by a constant stream of new technologies," says Camille Bres, of the Photonics Systems Laboratory (PHOSL). "But for the last few years we've reached a bottleneck, and scientists all over the world are trying to break through."

There have been several different approaches to the problem of supplying more throughput to respond to growing consumer demand, but they often require changes to the fibers themselves. That would entail pulling out and replacing the existing infrastructure.

Here, the EPFL team took a different approach, looking at the fundamental issue of how to process the light itself, i.e., how best to generate the pulses that carry the digital data. This approach would not entail a need to replace the entire optical fiber network. Only the transmitters would need to be changed.

Traffic problems on the information superhighway
In modern telecommunications exchanges, for example when two cell-phones are communicating with each other, the data are transported between the two antennae on optical fibers, by means of a series of light pulses that form codes.

Simply put, an "on" pulse corresponds to the number 1, while an "off" pulse corresponds to 0. The messages are thus sets of ones and zeros. These codes are decoded by the receiver, providing the initial message. The problem with this system is that the volume of data transmitted at one time can't be increased. If the pulses get too close together, they no longer deliver the data reliably.

"There needs to be a certain distance between each pulse, so they don't interfere with each other," says Luc Thevenaz, of EPFL's Fiber Optics Group (GFO). However, the EPFL team noticed that changes in the shape of the pulses could limit the interference.

Pulses that fit together like a jigsaw puzzle
Their breakthrough is based on a method that can produce what are known as "Nyquist sinc pulses" almost perfectly. "These pulses have a shape that's more pointed, making it possible to fit them together, a little bit like the pieces of a jigsaw puzzle lock together," says Camille Bres. "There is of course some interference, but not at the locations where we actually read the data."

The first to "solve" the puzzle
The idea of putting pulses together like a puzzle to boost optic fibers' throughput isn't new. However, the "puzzle" had never been "solved" before: despite attempts using sophisticated and costly infrastructures, nobody had managed to make it work accurately enough - until now. The EPFL team used a simple laser and modulator to generate a pulse that is more than 99% perfect.

Fine-tuning the system
Practically speaking, the shape of pulse is determined by its spectrum. In this case, in order to be able to generate the "jigsaw puzzle," the spectrum needs to be rectangular. This means that all the frequencies in the pulse need to be of the same intensity. Professors Bres and Thevenaz had this in mind when modulating their lasers.

Simple lasers are generally made up essentially of just one color - i.e., one optical frequency - with a very narrow spectrum. This is rather like a violin that has only one string. However, a laser can be subtly modulated (using a device called a modulator) so that it has other colors/frequencies. The result is a pulse composed of several different colors, with a larger spectrum.

The problem is that the pulse's main color generally still tends to be more intense than the others. This means the spectrum won't have the rectangular shape needed. For that, each color in the pulse needs to be of the same intensity, rather like getting the strings of a violin to vibrate with the same force, but without making any other strings nearby vibrate.

The team thus made a series of subtle adjustments based on a concept known as a "frequency comb" and succeeded in generating pulses with almost perfectly rectangular spectrum. This constitutes a real breakthrough, since the team has succeeded in producing the long-sought-after "Nyquist sinc pulses." Professor Thevenaz recounts how it all started: "Camille and I were talking with a Visiting Professor at the University of Leipzig, and we realized that by teaming up we might be able to develop this new approach."

The technology is already mature
The new pulses could well generate interest among many telecommunications-industry market participants. The technology is already mature, as well as 100% optic and relatively cheap. In addition, it appears that it could fit on a simple chip. "It almost seems too good to be true," says Prof. Thevenaz.

.


Related Links
Ecole Polytechnique Federale de Lausanne
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
Hackers stole 2 million stolen passwords: researchers
Washington (AFP) Dec 05, 2013
The discovery of some two million stolen online passwords this week prompted fresh warnings from security researchers to strengthen protection from hackers. US-based security firm Trustwave said it located the stolen credentials on a server in the Netherlands, affecting accounts from Facebook, Google, Yahoo and other major firms. Trustwave said in a blog post that many of the compromised ... read more


INTERNET SPACE
SST Australia: Signed, Sealed and Ready for Delivery

Scientists build a low-cost, open-source 3D metal printer

An ecosystem-based approach to protect the deep sea from mining

Study shows how water dissolves stone, molecule by molecule

INTERNET SPACE
US Navy Accepts MUOS-2 Satellite, Ground Stations After On-Orbit Testing

Boeing Tests Validate Performance of FAB-T Satellite Communications Program

Intelsat General To Provide Satellite Services To US Marines

Manpack Radios in Arctic Connect with MUOS Satellites Orbiting Equator

INTERNET SPACE
Russian Proton-M rocket launches Inmarsat-5F1 satellite

Basic build-up is being completed for Arianespace's Soyuz to launch Gaia

Third time a charm: SpaceX launches commercial satellite

Arianespace's role as a partner for the US satellite industry

INTERNET SPACE
'Smart' wig navigates by GPS, monitors brainwaves

CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

Russia to enforce GLONASS Over GPS

INTERNET SPACE
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

INTERNET SPACE
A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

INTERNET SPACE
China-Brazil satellite fails to enter orbit

Mysteries of Earth's radiation belts uncovered by NASA twin spacecraft

Mapping the world's largest coral reef

Indra To Manage And Operate The Main Sentinel-2

INTERNET SPACE
Air pollution in Europe kills even at guideline levels

Hong Kong announces new air pollution index

UCSB researcher shows microplastic transfers chemicals, impacting health

Madrid street-sweepers call off strike: union




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement