Subscribe to our free daily newsletters
  Space Industry and Business News  




Subscribe to our free daily newsletters



CHIP TECH
UCSF Team Develops "Logic Gates" To Program Bacteria As Computers

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.
by Staff Writers
San Francisco, CA (SPX) Dec 10, 2010
A team of UCSF researchers has engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

The work builds into cells the same logic gates found in electronic computers and creates a method to create circuits by "rewiring" communications between cells. This system can be harnessed to turn cells into miniature computers, according to findings that will be reported in an upcoming issue of Nature.

That, in turn, will enable cells to be programmed with more intricate functions for a variety of purposes, including agriculture and the production of pharmaceuticals, materials and industrial chemicals, according to Christopher A. Voigt, PhD, a synthetic biologist and associate professor in the UCSF School of Pharmacy's Department of Pharmaceutical Chemistry who is senior author of the paper.

The most common electronic computers are digital, he explained; that is, they apply logic operations to streams of 1's and 0's to produce more complex functions, ultimately producing the software with which most people are familiar. These logic operations are the basis for cellular computation, as well.

"We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells," Voigt said. "Here, we've taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing."

Applying this to biology will enable researchers to move beyond trying to understand how the myriad parts of cells work at the molecular level, to actually use those cells to perform targeted functions, according to Mary Anne Koda-Kimble, dean of the UCSF School of Pharmacy.

"This field will be transformative in how we harness biology for biomedical advances," said Koda-Kimble, who championed Voigt's recruitment to lead this field at UCSF in 2003. "It's an amazing and exciting relationship to watch cellular systems and synthetic biology unfold before our eyes."

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

"The purpose of programming cells is not to have them overtake electronic computers," explained Voigt, whom Scientist magazine named a "scientist to watch" in 2007 and whose work is included among the Scientist's Top 10 Innovations of 2009. "Rather, it is to be able to access all of the things that biology can do in a reliable, programmable way."

The research already has formed the basis of an industry partnership with Life Technologies, in Carlsbad, Cal., in which the genetic circuits and design algorithms developed at UCSF will be integrated into a professional software package as a tool for genetic engineers, much as computer-aided design is used in architecture and the development of advanced computer chips.

The automation of these complex operations and design choices will advance basic and applied research in synthetic biology. In the future, Voigt said the goal is to be able to program cells using a formal language that is similar to the programming languages currently used to write computer code.

The lead author of the paper is Alvin Tamsir, a student in the Biochemistry and Molecular Biology, Cell Biology, Developmental Biology, and Genetics (Tetrad) Graduate Program at UCSF. Jeffrey J. Tabor, PhD, in the UCSF School of Pharmacy, is a co-author.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
UCSF
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CHIP TECH
Tiny Laser Light Show Illuminates Quantum Computing
Washington DC (SPX) Dec 10, 2010
A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison. Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors ... read more







CHIP TECH
World's First Microlaser Emitting In 3-D

Taiwan to approve three billion dollar China plant: report

Sony and Sharp launch e-readers, tablets in Japan

Google says 300,000 Android phones activated daily

CHIP TECH
Arianespace Will Orbit Sicral 2 Milcomms Satellites

Codan Receives JITC Certification For 2110 HF Manpack

Northrop Grumman Bids for Marine Corps Common Aviation CnC

DSP Satellite System Celebrates 40 Years

CHIP TECH
SpaceX Dragon Does Two Orbits Before Pacific Splashdown

ISRO Hands Two Contracts To Arianespace

US company readies first space capsule launch

Kazakh Space Agency Seeks Extra Funding For New Baikonur Launch Pad

CHIP TECH
Program Error Caused Russian Glonass Satellite Loss

GPS Not Working A Shoe Radar May Help You Find Your Way

GPS Satellite Achieves 20 Years On-Orbit

World-Leading Spatial Experts Meet In Sydney

CHIP TECH
NASA Research Park To Host World's Largest, Greenest Airship

Hong Kong's Cathay Pacific names new chief, eyes China

Iran upset over EU refusal to refuel its airplanes

Cathay Pacific chief nominated to take helm of IATA

CHIP TECH
Rice Physicists Discover Ultrasensitive Microwave Detector

UCSF Team Develops "Logic Gates" To Program Bacteria As Computers

Tiny Laser Light Show Illuminates Quantum Computing

Elusive Spintronics Success Could Lead To Single Chip For Processing And Memory

CHIP TECH
Snow From Space

ASU Researcher Uses NASA Satellite To Explore Archaeological Site

Google to pay couple one dollar for trespassing

Mapping Mangroves By Satellite

CHIP TECH
Eutrophication Makes Toxic Cyanobacteria More Toxic

Waste pollutes Adriatic coast

Neglected Greenhouse Gas Discovered By Atmosphere Chemists

Bhopal activists dismiss India's bid for extra compensation


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement