. Space Industry and Business News .

Transforming computers of the future with optical interconnects
by Staff Writers
Washington DC (SPX) Feb 29, 2012

This sketch shows an optically connected topology called "HyperX." Credit: Image courtesy of HP Labs.

In order to build the next generation of very large supercomputers, it's essential that scientists and engineers find a way to seamlessly scale computation performance without exceeding extraordinary power consumption.

It is widely agreed that the major challenge to scaling future systems will no longer be the CMOS (Complementary Metal-Oxide-Semiconductor) integrated circuit technology but rather the data movement among processors and memory.

The rapidly evolving technology of photonic interconnects promises to deliver this increase in computing capabilities by providing ultra-high communication bandwidths with extreme energy efficiency and should therefore provide the impetus to move the technology from the lab into actual products.

The ability to manufacture photonic interconnect components-modulators, detectors, waveguides, and filters-on silicon substrates has finally been realized, and these optical interconnect structures show great potential for both intrachip and interchip applications.

HP Labs, the central research lab for Hewlett Packard (HP) in Palo Alto, Calif., is studying how this shift to light-based interconnects may revolutionize the way computers are built. Moray McLaren of HP will present his findings at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference, taking place March 4-8 at the Los Angeles Convention Center.

"This is an exciting time because it's a big transition for the industry," says McLaren, a researcher in HP Labs' Exascale Computing Lab, focused on inventing computer fabrics for next-generation IT solutions using a cross-layer, interdisciplinary approach.

"In many respects, it's one of the inevitable forces of technology that's been much-heralded for 10 years. There's finally industry-wide agreement that it will happen. We've reached the point where we can say that it's an essential technology-we'll need to have optical interconnects to deliver these machines in the 2017-2019 timeframe."

How will these optical technologies change the way computers are built? Computer architects hold essentially two views on the role photonics will play.

One widely held view is that photonic interconnects are simply "smarter wire," explains McLaren. "Today's computers are connected with copper cable up to a certain distance, currently about 8 meters, and as data rates continue to increase, this threshold will drop to less than a meter. And once the threshold is exceeded, the interconnect transitions from copper to optics."

While high-speed electronic interconnects are becoming increasingly range-limited, they still tend to cost less than optical interconnects.

"The result is that people are contorting the way they build systems to use as many of the less expensive electronic connections as possible-and non-optimal wiring topologies," notes McLaren.

The other viewpoint suggests that the characteristics and capabilities of optical communication are sufficiently different to the way things are done electronically-meaning that we need to entirely rethink how to build computers.

"There are things that we might do differently because the characteristics of optical interconnects are different," McLaren points out.

"One very simple example is that within a data center, distance isn't much of a factor after you've transitioned to an optical interconnect. Having paid the price of moving from the electronic domain into the optical domain, we can connect up any distance."

Another related topic that HP Labs is investigating, in terms of data centers, is pushing down power consumption. The power for computational parts is still reducing with Moore's Law, along with the shrinking size of the individual transistors.

But the power related to electronic communication isn't shrinking nearly as much because it's tied to real-world connectors and cables that don't scale in the same way.

Two of the key benefits of photonics are that it has the potential to provide lower-power communication over certain distances, and moving into the optical world provides more headroom in channel capacity and bandwidth densities are much higher.

"Photonic interconnects have very different properties than the electronic interconnects that underpin today's computer architectures. To gain the maximum benefit from emerging nanophotonic interconnects, it's necessary to reevaluate the design tradeoff at the system architect level," McLaren notes.

Techniques that have fallen out of use in the electronic domain due to signal integrity considerations, such as broadcast and circuit switching, can be exploited to significant advantage in optical interconnects.

Moving forward, the development of integrated CMOS nanophotonics will be critical to achieving the objectives of the most demanding computer development programs.

McLaren's presentation at OFC/NFOEC, titled "Future computing architectures enabled by optical and nanophotonic interconnects," will take place Tuesday, March 6 at 5 p.m. in the Los Angeles Convention Center.

Related Links
Optical Society of America
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Penn Researchers Build First Physical "Metatronic" Circuit
Philadelphia PA (SPX) Feb 27, 2012
The technological world of the 21st century owes a tremendous amount to advances in electrical engineering, specifically, the ability to finely control the flow of electrical charges using increasingly small and complicated circuits. And while those electrical advances continue to race ahead, researchers at the University of Pennsylvania are pushing circuitry forward in a different way, by repla ... read more

A Rainbow for the Palm of Your Hand

Study of tiny droplets could have big applications

Work video calls connect with personal smartphones

Walker's World: The threat to books

Raytheon's US Air Force Satellite Terminal Achieves Two Critical Milestones

Northrop Grumman Airborne Network Demonstrates Tactical Potential at Army Integration Exercise

Lockheed Martin Delivers Second AEHF Satellite To U.S. Air Force For Upcoming Launch

United Launch Alliance Atlas V Launches Mobile User Objective System-1 Mission

Ariane 5 readied for dual-satellite launch fpr Asia-Pacific telco

Aiming For An Open Window To Launch Into Space

Sea Launch on Track to Loft Intelsat 19

NuSTAR Mated to its Rocket

China launches 11th satellite for independent navigation system

Chinese province school buses to have GPS

NASA Pinning Down "Here" Better Than Ever

Russia to Launch 2 Glonass Satellites in 2012

Aircraft of the future could capture and re-use some of their own

Solar Impulse completes 72 hour simulated flight

Future aircraft may taxi without engines

Peru tests Green Skies fuel-saving project

Transforming computers of the future with optical interconnects

Penn Researchers Build First Physical "Metatronic" Circuit

Single-atom transistor is end of Moore's Law; may be beginning of quantum computing

A step toward better electronics

Google Street View to launch in Botswana

NASA Map Sees Earth's Trees In A New Light

NASA Satellite Finds Earth's Clouds are Getting Lower

Global permafrost zones in high-resolution images on Google Earth

EU takes France to court over nitrates water pollution

China accuses US firm over child lead poisoning

Gases drawn into smog particles stay there

Development-weary Singaporeans back 'Green Corridor'

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement