Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Space Industry and Business News .




TECH SPACE
The finest gold dust in the world
by Staff Writers
Vienna, Austria (SPX) Jun 01, 2012


The experiments in the ultrahigh vacuum will be carried out with the help of a scanning tunnelling microscope shown. Copyright: TU Wien

Most people value large chunks of gold - but scientists at the Vienna University of Technology are interested in gold at the smallest possible scale, because single gold atoms are potentially the most reactive catalysts for chemical reactions. However, when gold atoms are placed on a surface they tend to ball up into tiny nuggets consisting of several atoms.

A team of surface scientists now managed to fix single gold atoms on special sites of an iron-oxide surface. This could open the door to more efficient catalysts, requiring less of the precious material.

Gold Does Not Like to Be Alone
Gold is a noble metal and does not usually bond with other elements, but as a catalyst it facilitates chemical reactions. It can, for example, facilitate the conversion of poisonous carbon monoxide to carbon dioxide. The effectiveness of gold as a catalyst depends on the size of the gold particles. Some evidence suggests that it works best if the gold is present in the form of single atoms.

So far, however, this could not be studied in detail. "If individual gold atoms are put on a surface, they usually cluster up, forming nanoparticles", says Gareth Parkinson, who oversaw the experiments in the research group of Professor Ulrike Diebold at the Institute for Applied Physics at the TU Vienna.

Hot Surfaces - Loose Atoms
Higher temperatures lead to a higher mobility of the gold atoms, so in order to stop the atoms from clustering, most surfaces must be cooled to a temperature so low that the desired chemical reactions would stop entirely. The researchers at the TU Vienna found a special kind of iron-oxide surface, which locks the single gold atoms in place.

A Good Place to Settle Down
The key to success is a slight deformation of the iron-oxide crystal structure. The oxygen atoms of the topmost layer are not aligned in perfectly straight lines, they are bent into wiggles by the atoms below.

At the points where the lines of oxygen atoms are close to each other, the gold atoms attach permanently without losing grip. Even if the surface is heated, the gold atoms stay put - only at 500 degrees celsius they start forming clusters.

"When a gold atom hits the iron oxide surface, it diffuses to one of the sites where it can be attached to the surface", says Gareth Parkinson. That way, many single gold atoms can be placed close to each other.

When a gold atom hits a position already occupied by another gold atom, however, the two bond and start moving across the surface, picking up additional gold atoms along the way. When they have reached a critical size of at least five atoms, they become immobile again and the miniature gold nugget comes to rest.

New Paths for New Research
Ulrike Diebold expects that the new method will answer important open questions about catalysis. "We have created an ideal model system for probing the chemical reactivity of single atomic species", says Diebold.

The recent experiments will also help to advance theoretical research: the quantum mechanically complex bonding between single atoms and this particular surfaces provide an excellent test case for theoretical calculations of highly correlated electron systems.

Original publication

.


Related Links
Vienna University of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Microreactors to produce explosive materials
Pfinztal, Germany (SPX) Jun 01, 2012
The larger the reaction vessel, the quicker products can be made - or so you might think. Microreactors show just how wrong that assumption is: in fact, they can be used to produce explosive materials - nitroglycerine, for instance - around ten times faster than in conventional vessels, and much more safely as well. At the ACHEMA trade fair in Frankfurt, researchers will demonstrate microreactor ... read more


TECH SPACE
Netflix tops Apple in booming US online movies

The finest gold dust in the world

Microreactors to produce explosive materials

Short movies stored in an atomic vapor

TECH SPACE
New Mobile Antenna from ASC Signal Designed For Rapid Deployment by Defense and Commercial Users

Researchers Improve Fast-Moving Mobile Networks

Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

TECH SPACE
SpaceX Dragon capsule splash lands in Pacific

US cargo ship on return voyage from space station

US cargo vessel prepares to leave space station

Once Upon a Time

TECH SPACE
Lockheed Martin Completes Navigation Payload Milestone For GPS III Prototype

TomTom eyes expanding S. American market

Spirent Launches New Entry-Level Multi-GNSS Simulator

Beidou navigation system installed on more Chinese fishing boats

TECH SPACE
Louis Gallois hands EADS reins to Tom Enders

Boeing Delivers First EA-18G Growler Featuring Bharat Electronics Limited Cockpit Subassembly

Flapping protective wings increase lift

Russia, India to produce transports

TECH SPACE
The first chemical circuit developed

Copper-nickel nanowires could be perfect fit for printable electronics

Japan's Renesas ups chip outsourcing to Taiwan giant

New silicon memory chip developed

TECH SPACE
CryoSat goes to sea

S Korea to develop geostationary satellite for environmental monitoring

LiDAR Technology Reveals Faults Near Lake Tahoe

Satellite maps ocean floor

TECH SPACE
EU threatens Italy with court action over Rome trash

Fears as Latin America's largest trash dump closes

Ship's captain jailed over New Zealand oil spill

Germany, India in talks over treating Bhopal waste




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement