Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Superconducting circuits, simplified
by Staff Writers
Boston MA (SPX) Oct 21, 2014


Shown here is a square-centimeter chip containing the nTron adder, which performed the first computation using the researchers' new superconducting circuit. Image courtesy Adam N. McCaughan.

Computer chips with superconducting circuits - circuits with zero electrical resistance - would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption of the massive data centers that power the Internet's most popular sites.

Superconducting chips also promise greater processing power: Superconducting circuits that use so-called Josephson junctions have been clocked at 770 gigahertz, or 500 times the speed of the chip in the iPhone 6.

But Josephson-junction chips are big and hard to make; most problematic of all, they use such minute currents that the results of their computations are difficult to detect. For the most part, they've been relegated to a few custom-engineered signal-detection applications.

In the latest issue of the journal Nano Letters, MIT researchers present a new circuit design that could make simple superconducting devices much cheaper to manufacture. And while the circuits' speed probably wouldn't top that of today's chips, they could solve the problem of reading out the results of calculations performed with Josephson junctions.

The MIT researchers - Adam McCaughan, a graduate student in electrical engineering, and his advisor, professor of electrical engineering and computer science Karl Berggren - call their device the nanocryotron, after the cryotron, an experimental computing circuit developed in the 1950s by MIT professor Dudley Buck.

The cryotron was briefly the object of a great deal of interest - and federal funding - as the possible basis for a new generation of computers, but it was eclipsed by the integrated circuit.

"The superconducting-electronics community has seen a lot of devices come and go, without any real-world application," McCaughan says. "But in our paper, we have already applied our device to applications that will be highly relevant to future work in superconducting computing and quantum communications."

Superconducting circuits are used in light detectors that can register the arrival of a single light particle, or photon; that's one of the applications in which the researchers tested the nanocryotron. McCaughan also wired together several of the circuits to produce a fundamental digital-arithmetic component called a half-adder.

Resistance is Futile
Superconductors have no electrical resistance, meaning that electrons can travel through them completely unimpeded. Even the best standard conductors - like the copper wires in phone lines or conventional computer chips - have some resistance; overcoming it requires operational voltages much higher than those that can induce current in a superconductor.

Once electrons start moving through an ordinary conductor, they still collide occasionally with its atoms, releasing energy as heat.

Superconductors are ordinary materials cooled to extremely low temperatures, which damps the vibrations of their atoms, letting electrons zip past without collision. Berggren's lab focuses on superconducting circuits made from niobium nitride, which has the relatively high operating temperature of 16 Kelvin, or minus 257 degrees Celsius.

That's achievable with liquid helium, which, in a superconducting chip, would probably circulate through a system of pipes inside an insulated housing, like Freon in a refrigerator.

A liquid-helium cooling system would of course increase the power consumption of a superconducting chip. But given that the starting point is about 1 percent of the energy required by a conventional chip, the savings could still be enormous. Moreover, superconducting computation would let data centers dispense with the cooling systems they currently use to keep their banks of servers from overheating.

Cheap superconducting circuits could also make it much more cost-effective to build single-photon detectors, an essential component of any information system that exploits the computational speedups promised by quantum computing.

Engineered to a T
The nanocryotron - or nTron - consists of a single layer of niobium nitride deposited on an insulator in a pattern that looks roughly like a capital "T." But where the base of the T joins the crossbar, it tapers to only about one-tenth its width. Electrons sailing unimpeded through the base of the T are suddenly crushed together, producing heat, which radiates out into the crossbar and destroys the niobium nitride's superconductivity.

A current applied to the base of the T can thus turn off a current flowing through the crossbar. That makes the circuit a switch, the basic component of a digital computer.

After the current in the base is turned off, the current in the crossbar will resume only after the junction cools back down. Since the superconductor is cooled by liquid helium, that doesn't take long. But the circuits are unlikely to top the 1 gigahertz typical of today's chips. Still, they could be useful for some lower-end applications where speed isn't as important as energy efficiency.

Their most promising application, however, could be in making calculations performed by Josephson junctions accessible to the outside world. Josephson junctions use tiny currents that until now have required sensitive lab equipment to detect. They're not strong enough to move data to a local memory chip, let alone to send a visual signal to a computer monitor.

In experiments, McCaughan demonstrated that currents even smaller than those found in Josephson-junction devices were adequate to switch the nTron from a conductive to a nonconductive state. And while the current in the base of the T can be small, the current passing through the crossbar could be much larger - large enough to carry information to other devices on a computer motherboard.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Researchers develop world's thinnest electric generator
New York NY (SPX) Oct 20, 2014
Researchers from Columbia Engineering and the Georgia Institute of Technology report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchab ... read more


CHIP TECH
Strengthening thin-film bonds with ultrafast data collection

Triplet threat from the sun

What a Star Wars laser bullet really looks like

Engineers Harvest and Print Parts for New Breed of Aircraft

CHIP TECH
Canadian military communications getting upgrade

Russia to Orbit 9 MilCom Satellites by 2020

Thales providing satcom capability to Qatar

Development of software for electronic warfare resumes

CHIP TECH
SpaceX may soon start landing rockets on a platform

SpaceX returns to Earth loaded with lab results

Proton-M Lofts Express-AM6 Satellite

China Completes Country's Largest Spaceport

CHIP TECH
Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

CHIP TECH
Charles River Analytics awarded NASA contract to improve aviation safety

Brazil inks deal for Gripen aircraft

US agrees deal to buy 43 more F-35 fighters: Pentagon

Brazil, Argentina to negotiate over Gripen aircraft

CHIP TECH
Quantum holograms as atomic scale memory keepsake

Precise and programmable biological circuits

Superconducting circuits, simplified

Researchers develop world's thinnest electric generator

CHIP TECH
Copernicus operations secured until 2021

ECOSTRESS Will Monitor Plant Health

China Launches New Satellite Via Orbital Carrier Rocket

China to help map Guyana's mineral resources: minister

CHIP TECH
Delhi chokes on toxic smog after festival of lights

Major breakthrough could help detoxify pollutants

US hid troop exposure to chemical agents in Iraq: report

Days of heavy air pollution blight northern China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.