. Space Industry and Business News .

Successful Compatibility Testing of UHF Hosted Payload on Intelsat-22
by Andrew Hadinger
Bethesda MD (SPX) Jan 06, 2012

Credit: Boeing.

It's pretty cool to think about the power of satellite communications (SATCOM), and the advantages it provides for our military customers. What's definitely not cool is the fact that interoperability issues between different generations of UHF equipment can prevent those advantages from reaching the warfighter in the field.

Recently we tried to reduce the likelihood of interoperability issues arising. During the month of November, an industry team led by Intelsat General conducted a UHF legacy terminal compatibility test to verify interoperability between legacy UHF radios and the UHF hosted payload onboard the Intelsat 22 spacecraft (IS-22). IS-22 is scheduled to go into space in a few months.

The IS-22 spacecraft carries three payloads: commercial C and Ku, and UHF for the Australian Defence Force. The UHF payload is an example of a "hosted payload", whereby a dedicated government mission shares the commercial satellite platform. For IS-22, the customers are the Australian Defence Force and the U.S. Department of Defense, both of which need expanded UHF capabilities over the Indian Ocean, Africa, Europe, Asia and, of course, Australia.

Any time new payload designs are developed, questions arise regarding the payload's compatibility with existing equipment being used in the field. Even though the hosted payload on the IS-22 is functionally equivalent to other UHF payloads, the engineering team created a test to verify that the payload would be compatible with legacy equipment.

The plan was to run voice scripts and transfer data from one radioto the satellite and back to another antenna and a separate radio. We conducted the tests in the facility where the satellite has completed its final environmental testing and is undergoing its final flight configuration.

The team used two commonly available UHF radios to transcribe voice tests, checking for clarity, and ran data transfers through bit error rate test equipment. We conducted data tests for all available radio options and compared the bit error results against the standard for all military UHF communications, MIL-STD-188-181C.

Conducting this test presented several risks that required the team to create sub-tests to eliminate any possible damage to the flight-ready spacecraft. Due to the close proximity between the antennas and the satellite, the signal strength coming from the radio and antenna would normally be so strong that it would damage the satellite's sensitive receivers.

In order to mitigate this risk, we used large attenuators and conducted sub-tests, first using a test loop translator and second using the UHF payload from IS-27, currently under construction, as substitutes for the spacecraft in order to properly set attenuation values. Because the IS-27 UHF payload is identical to the one on the IS-22, this sub-test provided additional data points that can be used to show compatibility.

The team established the test set-up outside of the chamber and ran through equipment checks before the green light was given to test on the actual spacecraft. Once the process started, the team set up the equipment in the anechoic chamber, configured the UHF payload and set up the radios. This occurred intermittently over multiple shifts so as to fit in with other tests being run on the satellite, and required the team to be on standby for five days to finish all testing.

Through the hard work of all parties involved, the test was a great success. We found that both sets of radios tested could transfer high-quality voice and data streams at error rates that either met or exceeded the military standard. With these test results, IGC has lowered the risk of interoperability issues between the hosted UHF payload and legacy UHF equipment.

Related Links
Intelsat General
Space Technology News - Applications and Research

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SSTL tests TechDemoSat-1 plasma population payload
London, UK (SPX) Jan 03, 2012
Surrey Satellite Technology has completed another milestone in the UK's technology demonstration satellite TechDemoSat-1 with the successful testing of the engineering model of the first payload, a novel charged particle spectrometer design. The Charged Particle Spectrometer (ChaPS) built by UCL's Mullard Space Science Laboratory (UCL-MSSL), has a form factor of a 1-U CubeSat. It will demo ... read more

Successful Compatibility Testing of UHF Hosted Payload on Intelsat-22

Salk scientists map the frontiers of vision

Hybrid silkworms spin stronger spider silk

Light makes write for DNA information-storage device

Raytheon's Navy Multiband Terminal Tests With On-Orbit AEHF Satellite

Northrop Grumman And ITT Exelis Team For Army Vehicular Radio

Lockheed Martin Ships First Mobile User Objective System Satellite To Cape For Launch

Satellite Tracking Specialist, Track24, wins Canadian Government Contract

China to launch Bolivian satellite in 2013: Chinese Ambassador

Ariane 5, Soyuz, Vega: Three world-changing launch vehicles

Satellites: Europe's Arianespace sets 13 launches for 2012

Arianespace Set To Ride The Power of Three In 2012

Association of Old Crows Recognizes the Dangers of Persistent GPS Interference

Chinese Satellite Navigation System Beidou Begin Test Services

China's satellite navigation system will meet both civil and defense needs

Russia, India to cooperate in production of satellite navigation equipment

Slovenian adventurer embarks on eco-friendly world trip

Airbus agrees A380 deal with Hong Kong Airlines: reports

Chinese carriers won't pay EU carbon charge: group

Boeing's Wichita plant closure costs jobs

Relay race with single atoms: New ways of manipulating matter

Tiny wires could usher new computer era

Stanford engineers achieve record conductivity in strained lattice organic semiconductor

New technique makes it easier to etch semiconductors

Astro Aerospace Completes CDA of Reflector Boom Assembly for SMAP Mission

Ice data at your fingertips

TRMM Satellite Measured Washi's Deadly Rainfall

First ever direct measurement of the Earth's rotation

Looters in N.Z. raid cargo washed up from ship

Stricken New Zealand cargo ship breaks up

Beijing to issue new air quality data after online outcry

HK environmentalists outraged at landfill proposal


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement