Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Space Industry and Business News .




TECH SPACE
Study shows how water dissolves stone, molecule by molecule
by Staff Writers
Houston TX (SPX) Dec 09, 2013


File image.

Scientists from Rice University and the University of Bremen's Center for Marine Environmental Sciences (MARUM) in Germany have combined cutting-edge experimental techniques and computer simulations to find a new way of predicting how water dissolves crystalline structures like those found in natural stone and cement.

In a new study featured on the cover of the Journal of Physical Chemistry C, the team found their method was more efficient at predicting the dissolution rates of crystalline structures in water than previous methods. The research could have wide-ranging impacts in diverse areas, including water quality and planning, environmental sustainability, corrosion resistance and cement construction.

"We need to gain a better understanding of dissolution mechanisms to better predict the fate of certain materials, both in nature and in man-made systems," said lead investigator Andreas Luttge, a professor of mineralogy at MARUM and professor emeritus and research professor in Earth science at Rice. His team specializes in studying the thin boundary layer that forms between minerals and fluids.

Boundary layers are ubiquitous in nature; they occur when raindrops fall on stone, water seeps through soil and the ocean meets the sea floor. Scientists and engineers have long been interested in accurately explaining how crystalline materials, including many minerals and stones, interact with and are dissolved by water. Calculations about the rate of these dissolution processes are critical in many fields of science and engineering.

In the new study, Luttge and lead author Inna Kurganskaya, a research associate in Earth science at Rice, studied dissolution processes using quartz, one of the most common minerals found in nature. Quartz, or silicon dioxide, is a type of silicate, the most abundant group of minerals in Earth's crust.

At the boundary layer where quartz and water meet, multiple chemical reactions occur. Some of these happen simultaneously and others take place in succession. In the new study, the researchers sought to create a computerized model that could accurately simulate the complex chemistry at the boundary layer.

"The new model simulates the dissolution kinetics at the boundary layer with greater precision than earlier stochastic models operating at the same scale," Kurganskaya said.

"Existing simulations rely on rate constants assigned to a wide range of possible reactions, and as a result, the total material flux from the surface have an inherent variance range -- a plus or minus factor that is always there."

One reason the team's simulations more accurately represent real processes is that its models incorporate actual measurements from cutting-edge instruments and from high-tech materials, including glass ceramics and nanomaterials.

With a special imaging technique called "vertical scanning interferometry," which the group at MARUM and Rice helped to develop, the team scanned the crystal surfaces of both minerals and manufactured materials to generate topographic maps with a resolution of a just a few nanometers, or billionths of a meter.

"We found that dissolution rates that were predicted using rate constants were sometimes off by as much as two orders of magnitude," Luttge said.

The new method for more precisely predicting dissolution processes could revolutionize the way engineers and scientists make many calculations related to a myriad of things, including the stability of building materials, the longevity of materials used for radioactive waste storage and more, he said.

"Further work is needed to prove the broad utility of the method," he said. "In the next phase of research, we plan to test our simulations on larger systems and over longer periods."

.


Related Links
Rice University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Silver corrosion provides clues about performance in atmospheric conditions
Houston TX (SPX) Dec 12, 2013
Small test strips made of silver or other metals, called "coupons," are frequently used to assess and predict the speeds at which metals used in outdoor environments-pipelines, aircraft, bridges, as well as countless other types of infrastructure and machinery-will succumb to corrosion. "Silver is commonly used as a coupon, so it's important to understand what controls its corrosion rate," ... read more


TECH SPACE
SST Australia: Signed, Sealed and Ready for Delivery

Scientists build a low-cost, open-source 3D metal printer

An ecosystem-based approach to protect the deep sea from mining

Study shows how water dissolves stone, molecule by molecule

TECH SPACE
US Navy Accepts MUOS-2 Satellite, Ground Stations After On-Orbit Testing

Boeing Tests Validate Performance of FAB-T Satellite Communications Program

Intelsat General To Provide Satellite Services To US Marines

Manpack Radios in Arctic Connect with MUOS Satellites Orbiting Equator

TECH SPACE
Russian Proton-M rocket launches Inmarsat-5F1 satellite

Basic build-up is being completed for Arianespace's Soyuz to launch Gaia

Third time a charm: SpaceX launches commercial satellite

Arianespace's role as a partner for the US satellite industry

TECH SPACE
'Smart' wig navigates by GPS, monitors brainwaves

CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

Russia to enforce GLONASS Over GPS

TECH SPACE
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

TECH SPACE
A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

TECH SPACE
China-Brazil satellite fails to enter orbit

Mysteries of Earth's radiation belts uncovered by NASA twin spacecraft

Mapping the world's largest coral reef

Indra To Manage And Operate The Main Sentinel-2

TECH SPACE
Air pollution in Europe kills even at guideline levels

Hong Kong announces new air pollution index

UCSB researcher shows microplastic transfers chemicals, impacting health

Madrid street-sweepers call off strike: union




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement