Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Scientists provide 'new spin' on emerging quantum technologies
by Staff Writers
York, UK (SPX) Apr 26, 2013


Images illustrate how collective spin excitations behave under the effect of the spin-orbit field, with and without external magnetic field. Image courtesy 2012 American Physical Society.

An international team of scientists has shed new light on a fundamental area of physics which could have important implications for future electronic devices and the transfer of information at the quantum level.

The electrical currents currently used to power electronic devices are generated by a flow of charges. However, emerging quantum technologies such as spin-electronics, make use of both charge and another intrinsic property of electrons - their spin - to transfer and process signals and information.

The experimental and theoretical work, carried out by researchers from York's Department of Physics, the Institute of Nanoscience in Paris and the University of Missouri-Columbia, USA, could have important implications for spintronics and quantum information technologies.

The team looked at semiconductors' structures - the base of current electronic devices and of many spintronic device proposals - and the problems created by internal fields known as spin-orbit fields. In general, these tend to act differently on each electronic spin, causing a phenomenon referred to as 'spin-decoherence'. This means that the electronic spins will behave in a way which cannot be completely controlled or predicted, which has important implications for device functionalities.

To address this problem, the scientists looked at semiconductor structures called 'quantum wells' where the spins can be excited in a collective, coherent way by using lasers and light scattering.

They demonstrated that these collective spin excitations possess a macroscopic spin of quantum nature. In other words, the electrons and their spins act as a single entity making them less susceptible to spin orbit fields, so decoherence is highly suppressed.

The theoretical work was led by Dr Irene D'Amico from York's Department of Physics, and Carsten Ullrich, an Associate Professor from Missouri-Columbia's

Department of Physics. The project began with their prediction about the effect of spin Coulomb drag on collective spin excitations, and developed into a much larger international project spanning over three years, which was funded in the UK by a Royal Society grant, with additional funding from the Engineering and Physical Sciences Research Council (EPSRC).

Dr D'Amico said: "This work has developed into a strong international collaboration which has greatly improved our understanding at fundamental level of the role of many-body interactions on the behaviour of electron spins.

"By combining experimental and theoretical work, we were able to demonstrate that through many-body interactions, a macroscopic collection of spins can behave as a single entity with a single macroscopic quantum spin, making this much less susceptible to decoherence. In the future, it may be possible to use these excitations as signals to transport or elaborate information at the quantum level."

After reporting their results in the journal Physical Review Letters last year, the team of scientists confirmed and extended the results by considering different materials and type of excitation. The second set of experiments, were recently reported in Physical Review B (Rapid Communication) and highlighted by the Journal as an 'Editor's Suggestion'.

Dr Florent Perez, who led the experimental work with Florent Baboux, at the CNRS/Universite Paris VI, says the results strongly suggest that the quantum nature of the macroscopic spin is universal to collective spin excitations in conductive systems.

He said: "The collaboration with Irene D'Amico and Carsten Ullrich has been particularly powerful to disentangle the puzzle of our data. In our first joint work we constructed an interpretation of the phenomenon which was confirmed in a second investigation carried out on a different system. This paved the way for a universality of the effect."

.


Related Links
University of York
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
New Nanowire Structure Has Potential to Increase Semiconductor Applications
Cincinnati OH (SPX) Apr 28, 2013
New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair - a semiconductor nanowire. UC's Ja ... read more


CHIP TECH
Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts

MEADS Low Frequency Sensor Cues Multifunction Fire Control Radar in Test

CHIP TECH
Gilat to Equip IDF with SatTrooper-1000 Military Manpack

General Dynamics' WIN-T Increment 2, Soldiers' "On-the-Move" Network, Advances as 10th Mountain Division Trains for Deployment

Lockheed Martin Awarded Contract to Modernize U.S. Joint Theater Air Operations System

Boeing Delivers FAB-T Test Units to US Air Force

CHIP TECH
Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

Launch pad problem scrubs launch of Antares rocket for NASA

CHIP TECH
Russia launches latest satellite in its global positioning system

Sat-nav warns London lorry drivers of cyclists

TomTom says sales fall, turning from navigation market

Northrop Grumman's Astro Aerospace Receives Follow-On Order for 48 More JIB Antennas for GPS III Satellites

CHIP TECH
Australia unveils its F-35 JSF 'Iron Bird'

China welcomes French president with Airbus deal

Multifunction Advanced Data Link Flight Tested For F-35 Program

Brazil drops plan to build AgustaWestland helicopter

CHIP TECH
Scientists provide 'new spin' on emerging quantum technologies

Germanium made compatible

Researchers measure near-field behavior of semiconductor plasmonic microparticles

Revolutionary new device joins world of smart electronics

CHIP TECH
NASA's HyspIRI: Seeing the Forest and the Trees and More

Satrec Initiative of South Korea Continues Collaboration with UAE for DubaiSat-3 Program

Google says Street View data now take in 50 countries

DMCii increases downlink capacity with Svalbard ground station facilities

CHIP TECH
Research Harnesses Solar-Powered Proteins to Filter Harmful Antibiotics from Water

European lawmakers tighten rules on ship-breaking industry

Albania to hold referendum on waste imports

Smog-eating pavement on greenest street in America




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement