. Space Industry and Business News .

Scientists create new atomic X-ray laser
by Anne M Stark for LLNL News
Stanford CA (SPX) Jan 30, 2012

A powerful X-ray laser pulse from SLAC National Accelerator Laboratory's Linac Coherent Light Source comes up from the lower-left corner (green) and hits a neon atom (center). Illustration by Gregory M. Stewart/SLAC.

Lab scientists and international collaborators have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and ultimately opening the door to new medicines, devices and materials.

The researchers, reporting in Nature, aimed radiation from the Linac Coherent Light Source (LCLS), located at the Stanford Linear Accelerator Center (SLAC), at a cell containing neon gas, setting off an avalanche of X-ray emissions to create a new "atomic X-ray laser."

"X-rays give us a penetrating view into the world of atoms and molecules," said physicist Nina Rohringer, a former LLNL postdoc, now a group leader at Max Planck Society's Advanced Study Group. She collaborated with researchers from SLAC, LLNL and Colorado State University.

Livermore scientists include Rich London, Felice Albert, Jim Dunn, Alex Graf, Randy Hill and Stefan Hau-Riege.

The new laser fulfills a 1967 prediction, which proposed that X-ray lasers could be made by first removing inner electrons from atoms and then inducing electrons to fall from higher to lower energy levels, releasing a single color of light in the process. But until 2009, when LCLS turned on, no X-ray sources were powerful enough to create this type of laser.

To make the atomic X-ray laser, LCLS's powerful X-ray pulses - each a billion times brighter than any available before - knocked electrons out of the inner shells of many of the neon atoms.

When other electrons fell in to fill the holes, about one in 50 atoms responded by emitting a so-called hard X-ray, which has a very short wavelength. Those X-rays then stimulated neighboring neon atoms to emit more X-rays, creating a domino effect that amplified the laser light 200 million times.

"This work presents a big advance in the quest for shorter wavelength lasers," London said.

"In addition, the demonstration of the neon X-ray laser provides a very sensitive test of the physics of intense X-ray interaction with atoms. By comparing theoretical modeling to the observed output signals, one can pin down the basic ultrafast processes occurring in the region where the LCLS beam interacts with the gas."

In the future, Rohringer says she will try to create even shorter-pulse, higher-energy atomic X-ray lasers using oxygen, nitrogen or sulfur gases.

The research was funded by LLNL's Laboratory Research and Development program. LDRD is used to fund creative basic and applied research activities in areas aligned with the Lab's principal missions.

"Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser," Nature, Jan. 26, 2012; "Groundbreaking science with the world's brightest X-rays," Science and Technology Review, January/February 2011; "Laser science: Even harder X-rays," Nature, Jan. 26, 2012 SLAC Linac Coherent Light Source.

Related Links
Stanford Linear Accelerator Center (SLAC)
Space Technology News - Applications and Research

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Fusion: X-ray laser zaps solid to 2 million degrees
Paris (AFP) Jan 25, 2012
The quest to create nuclear fusion may have come a step closer when scientists heated solid matter to two million degrees with the world's most powerful X-ray laser, a study reported Wednesday. A team of researchers working at the SLAC National Accelerator Laboratory in Menlo Park, California used the rapid-fire laser - a billion times brighter that any other man-made X-ray source - to fla ... read more

Congolese inventor puts African tablet on sale

SciTechTalk: The smartphone debate

Catalyzing new uses for diesel by-products

Supermaterial goes superpermeable

Brazil to assemble Harris tactical radio

Northrop Grumman Wins Award for USAF Design and Engineering Support Program

Fourth WGS Satellite Sends First Signals from Space

Boeing to Build More Wideband Global SATCOM Satellites for USAF

MT Aerospace wins contract for operation and maintenance of launch facilities' mechanical systems

Proton-M, Dutch Satellite Taken to Launch Pad

Delta 4 Launches Air Force Wideband Global SATCOM-4 Satellite

Stratolaunch Systems Announces Ground Breaking At Mojave

LED lights point shoppers in the right direction

Opening of UK site producing the heart of Galileo

Northrop Grumman to Supply Marine Navigation Equipment for Suez Canal Authority

Old satellite teaching new lessons

Japan's ANA nine-month net profit down 10%

Stanford aero-engineers debut open-source fluid dynamics design application

Philippines welcomes PAL sale plan

Cathay to buy six Airbus planes for US$1.63bn

Jumpstarting computers with 3-D chips

Researchers Devise New Means For Creating Elastic Conductors

Cooling semiconductor by laser light

A new class of electron interactions in quantum systems

NASA Finds 2011 Ninth-Warmest Year on Record

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

NASA Sees Repeating La Nina Hitting its Peak

Map project accuses Google users of edits

Drone discovers 'river of blood' in Texas

Nano form of titanium dioxide can be toxic to marine organisms

Mysterious Flotsam in Gulf of Mexico Came from Deepwater Horizon Rig

BP could pay US $25 billion for Gulf oil spill: analyst


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement