Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Researchers develop world's thinnest electric generator
by Staff Writers
New York NY (SPX) Oct 20, 2014


This is a cartoon showing positive and negative polarized charges are squeezed from a single layer of atoms of molybdenum disulfide (MoS2), as it is being stretched. Image courtesy Lei Wang/Columbia Engineering.

Researchers from Columbia Engineering and the Georgia Institute of Technology report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

In a paper published online in Nature, research groups from the two institutions demonstrate the mechanical generation of electricity from the two-dimensional (2D) MoS2 material. The piezoelectric effect in this material had previously been predicted theoretically.

Piezoelectricity is a well-known effect in which stretching or compressing a material causes it to generate an electrical voltage (or the reverse, in which an applied voltage causes it to expand or contract). But for materials of only a few atomic thicknesses, no experimental observation of piezoelectricity has been made, until now.

The observation reported provides a new property for two-dimensional materials such as molybdenum disulfide, opening the potential for new types of mechanically controlled electronic devices.

"This material-just a single layer of atoms-could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket," says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.

"Proof of the piezoelectric effect and piezotronic effect adds new functionalities to these two-dimensional materials," says Zhong Lin Wang, Regents' Professor in Georgia Tech's School of Materials Science and Engineering and a co-leader of the research.

"The materials community is excited about molybdenum disulfide, and demonstrating the piezoelectric effect in it adds a new facet to the material."

Hone and his research group demonstrated in 2008 that graphene, a 2D form of carbon, is the strongest material. He and Lei Wang, a postdoctoral fellow in Hone's group, have been actively exploring the novel properties of 2D materials like graphene and MoS2 as they are stretched and compressed.

Zhong Lin Wang and his research group pioneered the field of piezoelectric nanogenerators for converting mechanical energy into electricity. He and postdoctoral fellow Wenzhuo Wu are also developing piezotronic devices, which use piezoelectric charges to control the flow of current through the material just as gate voltages do in conventional three-terminal transistors.

There are two keys to using molybdenum disulfide for generating current: using an odd number of layers and flexing it in the proper direction. The material is highly polar, but, Zhong Lin Wang notes, so an even number of layers cancels out the piezoelectric effect. The material's crystalline structure also is piezoelectric in only certain crystalline orientations.

For the Nature study, Hone's team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques.

They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, Wang's group installed measurement electrodes on samples provided by Hone's group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.

The researchers also noted that the output voltage reversed sign when they changed the direction of applied strain, and that it disappeared in samples with an even number of atomic layers, confirming theoretical predictions published last year. The presence of piezotronic effect in odd layer MoS2 was also observed for the first time.

"What's really interesting is we've now found that a material like MoS2, which is not piezoelectric in bulk form, can become piezoelectric when it is thinned down to a single atomic layer," says Lei Wang.

To be piezoelectric, a material must break central symmetry. A single atomic layer of MoS2 has such a structure, and should be piezoelectric. However, in bulk MoS2, successive layers are oriented in opposite directions, and generate positive and negative voltages that cancel each other out and give zero net piezoelectric effect.

"This adds another member to the family of piezoelectric materials for functional devices," says Wenzhuo Wu.

In fact, MoS2 is just one of a group of 2D semiconducting materials known as transition metal dichalcogenides, all of which are predicted to have similar piezoelectric properties. These are part of an even larger family of 2D materials whose piezoelectric materials remain unexplored.

Importantly, as has been shown by Hone and his colleagues, 2D materials can be stretched much farther than conventional materials, particularly traditional ceramic piezoelectrics, which are quite brittle.

The research could open the door to development of new applications for the material and its unique properties.

"This is the first experimental work in this area and is an elegant example of how the world becomes different when the size of material shrinks to the scale of a single atom," Hone adds. "With what we're learning, we're eager to build useful devices for all kinds of applications."

Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Columbia University School of Engineering and Applied Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
A novel platform for future spintronic technologies
Lausanne, Switzerland (SPX) Oct 15, 2014
Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge. The field can bring significant advantages to computer technology, combining higher speeds with lower energy consumption. Spintronic circuits need ways to control electron spin without interference from electron charge. Scientists at EPFL, working with Universit ... read more


CHIP TECH
Engineers find a way to win in laser performance by losing

Unstoppable magnetoresistance

Sticky business: bonding ultrastable space missions

Tailored flexible illusion coatings hide objects from detection

CHIP TECH
Development of software for electronic warfare resumes

GD's MUOS-Manpack PRC-155 Radio Connects USAF Aircraft to Ops Center

Northrop Grumman Debuts Low-Cost Terminals To Protect US Warfighters

'Space bubbles' may have aided enemy in fatal Afghan battle

CHIP TECH
Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

Soyuz Flight VS09 Report

CHIP TECH
Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

Russian Phone Operators Could Become GLONASS Shareholders

CHIP TECH
Maintenance, upgrade work on Italian aircraft carrier ahead of schedule

Jordanian Air Force helicopter pilots to train on Robinson aircraft

C-17 false claims allegations settled by Boeing for $23 million

Bell Helicopter chooses GE Aviation for its V-80 Valor program

CHIP TECH
Researchers develop world's thinnest electric generator

Australian teams set new records for silicon quantum computing

A novel platform for future spintronic technologies

Future computers could be built from magnetic 'tornadoes'

CHIP TECH
NASA Tool Helps Airliners Minimize Weather Delays

Sophisticated Sensor Will Give NOAA Earlier Warnings of Severe Storms

Chinese scientist proposes new scientific satellites

NASA Begins Sixth Year of Airborne Antarctic Ice Change Study

CHIP TECH
US hid troop exposure to chemical agents in Iraq: report

Days of heavy air pollution blight northern China

Nanoparticles Accumulate Quickly in Wetland Sediment

New study explains wintertime ozone pollution in Utah oil and gas fields




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.